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Abstract

While modern search engines are excellent resources for finding information on the web,
in order to put together that information into a useful mental model for learning or making a
decision – such as picking a new car or choosing a JavaScript library – people often need to
collect information about the options available and the criteria on which to evaluate the options,
synthesize such information from various sources into a meaningful structure, and share and
justify the results with others. This sensemaking process, often highly iterative and cyclical, puts
a significant cognitive burden on users, and often requires them to externalize their evolving
mental models rather than keeping everything in their working memory. However, not only
the tools that people use for externalization – such as browser tabs, documents, spreadsheets, or
note-taking apps – poorly support the constant shifts between collecting, extracting, organizing,
and reorganizing that are needed, but worse yet, even if they do put in the work to organize and
share an external representation of their learning outcome or decision rationale (such as creating
a list of suitable cars or a table of front-end libraries), it can still be difficult for subsequent users
to evaluate whether they can or should trust and reuse that work without wasting it.

In this thesis, I explore interactive systems which bridge the gap between the rapidly evolving
mental models in peoples’ heads and the externalization of those models by exploring oppor-
tunities to reduce the costs and increase the benefits of externalization, thereby capturing
more of the cognitive work that users engage in while making sense of information in order to
help them as well as subsequent people who might benefit from their work.

To help the initial users forage and structure information, my collaborators and I together
designed Unakite, a browser extension that enables people to easily collect and organize infor-
mation into a comparison table in a sidebar as they are searching and browsing, which proved to
be able to significantly lowered the friction of externalizing mental models compared to conven-
tional approaches like taking notes and saving screenshots in a separate Google Doc. Building on
Unakite, we explored approaches to further reduce the cost of externalization and help people fo-
cus on their main activity of reading andmaking sense of web content, such as by intelligently and
automatically keeping track of key information and evidence on behalf of a user (theCrystalline
system) and leveraging novel lightweight interaction techniques (theWigglite system). To help
subsequent users explore and evaluate previous users’ work, I developed both a framework and
the Strata system that collects and visualizes key signals about the context, trustworthiness, and
thoroughness of previous design decisions and rationale.

Despite these advances, the dynamic and evolving nature of sensemaking – particularly in
the early stages – means that the structures people created often become obsolete as their mental
representations evolve over the course of an investigation. To completemy dissertation, I propose
to integrate my existing work together, and in addition, explore what kinds of knowledge organi-
zational structure (e.g., lists, mind maps, affinity diagrams, etc.) are the most appropriate during
different stages of sensemaking, and how can tools support users in fluidly and effortlessly trans-
forming these structures to reflect their evolving mental models. Similar to my previous work,
I plan to evaluate the new systems through a series of lab and field studies with people solving
their real-world problems.
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Chapter 1

Introduction

While modern search engines are excellent resources for finding information on the web, in or-
der to put together that information into a useful mental model for learning or making a deci-
sion – such as picking a new mirrorless camera, researching a medical diagnosis, or choosing a
JavaScript library to build websites – people often need to collect information about trade-offs
frommultiple sources, extract and synthesize snippets of information into meaningful structures,
or keep track of, share, and justify their decisions and rationale with others or to their future
selves.

During this process of sensemaking, people’s mental models constantly evolve as they gather
more information about the decision space – the contexts relevant to their goals, the options
available, and the criteria or constraints on which to evaluate the options. For example, a YouTu-
ber seeking to upgrade her vlogging setup many learn about many different camera options from
various websites. As she discovers them, she prioritizes in her head which she wants to in-
vestigate first, looking for video samples and reviews that speak either positively or negatively
about those cameras in terms of various dimensions such as sensor resolution, zoom range, color
accuracy, battery life, etc. Indeed, estimates suggest that up to 1/3 of the time people spent on-
line [143,186,228], or around 24 billion hours per year (as of 2009) in the US alone [30], are spent
performing such complex and cognitively-demanding sensemaking tasks.

This highly iterative and cyclical process puts a significant cognitive burden on users, and
often requires them to externalize their evolving mental models rather than keeping everything
in their working memory. However, the tools that people have access to nowadays for external-
ization – such as browser tabs, documents, spreadsheets, or note-taking apps –- poorly support
the constant shifts between information collecting, extracting, organizing, and reorganizing that
are needed. Therefore, the gap between the quickly evolving mental models in peoples’ heads and
the lagging representations of those models in external documentsmeans that people often abandon
their efforts to externalize halfway or avoid doing so in the first place [57,61,114,177], and instead
keep everything in their working memory, which, unfortunately, is not unlimited [124, 188, 261].

Furthermore, even if people do put in the work to organize and share an external representa-
tion of their learning outcome or decision (such as creating a list of reasonable vlogging cameras
or a comparison table of front-end libraries), it can be difficult for subsequent users to evaluate
whether they can or should reuse that work. Often, the perceived effort of deciding to reuse some-
one else’s sensemaking knowledge might exceed that of redoing the sensemaking from scratch –
it involves, for example, judging weather the initial knowledge creator’s goals and context match
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CHAPTER 1. INTRODUCTION

with that of the subsequent user themselves, if the creator has the proper expertise and has per-
formed a thorough job of surveying the information landscape. For example, a subsequent vlogger
can theoretically take advantage of the camera options and reviews that the previous YouTuber
has found, but they may have a vastly different budget to begin with, and may need to double
check if there are additional alternatives available on the market, etc., and may ultimately prefer
to redo their own sensemaking despite of the rich knowledge that the first person has summarized
together.

In this thesis, I1 explore interactive systemswhich bridge the gap between the rapidly evolving
mental models in peoples’ heads and the externalization of those models by exploring opportu-
nities to reduce the costs and increase the benefits of externalization, thereby capturing
more of the cognitive work that users engage in while making sense of information in order to
help them as well as others who might benefit from their work.

The research efforts described in this thesis can be divided into four interrelated stages: help-
ing the initial user (1) forage and (2) structure information, and helping subsequent users (3) evalu-
ate and (4) adapt and reuse the initial users’ sensemaking results. I posit that the same signals that
could help computational tools understand initial people’s context and intents can also help subse-
quent people evaluate and decide whether and how to reuse the artifacts scaffolded by those tools.
Therefore, an overarching goal for this thesis is to understand and explore synergies in making it
worth people’s effort to provide rich signals about their sensemaking context and mental mod-
els to tools that can help them more effectively collect, organize, and refactor information and
knowledge, and leveraging those signals to lower the cost for subsequent users to evaluate and
adapt the knowledge externalized by previous users. Next, I provide a brief overview of the four
prototype systems that constitute my completed work, and then discuss how my proposed work
would further contribute to this goal.

1.1 Overview
Capturing and externalizing people’s mental models can be challenging for a number of reasons.
For example, as mentioned above, people are generally extremely sensitive to the cost structure
of the tools they use for making sense of information, and any tool that adds a perceived burden
or obstacle to their natural sensemaking process is likely to not be adopted. In addition, people
are often uncertain about which information will eventually turn out to be relevant, valuable,
and worth capturing, especially at early stages of their learning and exploration when they are
overloaded with information. Also, the need for externalization of their mental models are often
not discovered until part way through an investigation process, such as juggling much more
options, criteria, and trade-offs than initially anticipated, or simply being required to document
a decision and the rationale for downstream auditing purposes, etc.

To lay the foundation for people to externalize their mental models, I designed the Unakite
system, which enables people to collect, organize, and keep track of information about decision
trade-offs and build a comparison table, which can be saved as design rationale for later use. To
address the potential high interaction and interruption cost of manually collecting and organizing
information, I explored automatic approaches by leveraging natural language processing (NLP)

1Although this thesis proposal is based on research projects that I have personally led, this document predomi-
nantly contains the pronoun “we” out of respect to all of my collaborators who have contributed to the research.
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1.2. EXPECTED CONTRIBUTIONS

and passive behavioral signals that people naturally exhibit while searching and browsing such
as mouse movement and dwell time (the Crystalline system). In the meantime, I also explored a
family of lightweight gestures (which we framed as “wiggling”) that can be used to fluidly collect
and annotate information in-situ without much interruption to the primary activity of reading
and comprehendingweb content (theWigglite system). Finally, to help subsequent users explore
and evaluate previous users’ work for potential reuse, I both summarized a framework (through
interviews) and developed the Strata system that collects and visualizes to subsequent users the
key signals about the context, trustworthiness, and thoroughness of previous design decisions
and rationale.

Despite these advances, the dynamic and evolving nature of sensemaking – particularly in
the early stages – means that the structures people created often become obsolete as their mental
representations evolve over the course of an investigation. To completemy dissertation, I propose
to integrate my previous work together, and explore what kinds of knowledge organizational
structure (e.g., lists, mind maps, affinity diagrams, etc.) are the most appropriate during different
stages of sensemaking, and how can tools support users in fluidly and effortlessly transforming
these structures to reflect their evolving mental models. Similar to my previous work, I plan
to evaluate the new systems through a series of lab and field studies with people solving their
real-world problems.

To ground the exploration, I primarily focus on two domains: programming and consumer
decision making, because both involve frequent learning and research on the web followed by
potentially impactful decisions, and are specific enough to engage with deep contextual complex-
ities, yet provide insights that generalize to other sensemaking activities.

1.2 Expected Contributions
The series of work introduced in this thesis points to the importance of having tool support that
helps users efficiently organize and manage information as they find it in a way that could also be
beneficial to others, and therefore bootstrapping the virtuous cycle of people being able to build
on each other’s sensemaking results, fostering efficient collaboration and knowledge reuse.

Specifically, my existing work made the following contributions thus far:

• A thorough review of the background and related research on sensemaking in general and
the various tools and systems for foraging, structuring, evaluating, and reusing knowledge
(chapter 2).

• Unakite, a prototype system that reduces the costs of capturing and organizing online in-
formation in-situ and preserves the knowledge as design rationale [131, 177] (chapter 3).

• Evidence that it is possible to automatically identify options, criteria, and relevant evidence
from web pages that a user is browsing using a set of natural language understanding
heuristics [179] (chapter 4).

• A set of implicit behavioral signals that users exhibit when browsing the web which can
be leveraged for prioritizing and filtering that collected information [179] (chapter 4).

• A prototype system called Crystalline that integrates the heuristics and behavioral signals
to automatically collect and organize viewed information into list and comparison table
views for subsequent decision making [179] (chapter 4).
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CHAPTER 1. INTRODUCTION

• A novel class of wiggle-based gestures that are cognitively and physically lightweight to
perform to collect information, and can simultaneously encode aspects of users’ mental
context [180] (chapter 5).

• A prototype event-driven JavaScript library that implements such wiggle-based gestures
and runs in web browsers [180] (chapter 5).

• Wigglite, a prototype system that takes advantage of the wiggle-based gestures to enable
information capturing and classification during sensemaking that works on both desktop
and mobile devices [180] (chapter 5).

• A synthesized framework for augmenting judgements of appropriate knowledge reuse in-
cluding three major facets: context, trustworthiness, and thoroughness [178] (chapter 6).

• A prototype system called Strata that automatically records, computes, and visualizes many
of the appropriateness signals described in the framework [178] (chapter 6).

• A series of lab studies showcasing the usability, usefulness, and effectiveness of our tools
in reducing the costs and increasing the benefits of externalizing people’s mental models
when sensemaking.

In the proposed work, I plan to make the following contributions:

• A prototype system that support users to create multiple types of organizational structures
and fluidly transform them to reflect their evolving mental model during both early and
late stages of their sensemaking processes.

• A lab evaluation of the prototype system that probes its usability, usefulness, and effective-
ness.

4



Chapter 2

Background & Related Work

Sensemaking is widely considered to be the process of searching, collecting, and organizing in-
formation to iteratively develop a mental model of an information space in service of a user’s
goals [220, 234]. A number of models of sensemaking have been proposed, including Russell et
al.’s cost structure view [234], Dervin’s sensemaking methodology [75], Klein et al.’s data-frame
model [150], organizational process views [71,99], organizational adaptation views [71,195], and
the notional model by Pirolli and Card [219]. At a high level, these models agree that a sensemak-
ing process involves alternating between two phases: foraging, which involves people search-
ing for and extracting information, often from various data sources; and structuring, the pro-
cess of integrating the amassed information to form a schema or representation to interpret the
space [220]. More recent work has also explored the concept of distributed sensemaking [90,167],
which involves evaluatingwhether to take advantage of and reuse an initial user’s decisionmak-
ing results or sensemaking artifacts [90,106,245] and adapting and reusing them for their own
purposes [107, 216]. Below, I briefly discuss the related work for each of these stages.

2.1 Foraging
Prior work has reported that the foraging phase, which involves collecting and extracting in-
formation, is where people tend to spend the majority of time during a sensemaking process
[47,55,185,219]. Thus, there have been many research and commercial tools that try to help peo-
ple better capture information during this phase. Some focused on keeping track of entire web-
pages or documents, such as SenseMaker [32], browser bookmarks, and reading lists; while others
enabled users to capture finer-grain units within a web document, such as Hunter Gather [242],
Clipper [148], and Google Notebook [103].

However, foraging can be challenging both physically, because the complex structure of web
pages can make it hard to select the desired content with exact boundaries and tiresome to re-
peat the selection frequently [58,63,230], and cognitively, because in early stages of sensemaking
people often are not sure what will actually end up being relevant, useful, and worth collect-
ing [34, 90].

With respect to the physical demand for collecting and extracting information while search-
ing and browsing, prior work has pointed out that users need quick and lightweight interaction
techniques, because if the physical cost is too high (such as specifying the boundaries of some
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CHAPTER 2. BACKGROUND & RELATED WORK

desired content, copying it, switching context to the target tab or window, and transferring the in-
formation into the application where it will be stored [89]), users tend not to capture information
in the first place [124, 177, 188, 261]. Prior work has explored various ways to lessen the physical
cost – on the one hand, multiple approaches have been proposed to make selecting desired con-
tent faster by offering pre-defined selection boundaries. For example, systems like Entity Quick
Click and Citrine [40, 138, 256] employ techniques like named-entity recognition [184] to pre-
process and highlight semantically meaningful entities in a document and allow users to collect
and annotate relevant information with a single click. On the other hand, research and commer-
cial products have explored collecting information on behalf of users as they search and browse
the web. For example, works such as Thresher [125] and Dontcheva et al.’s web summarization
tool [78] let users create and curate patterns and templates of information that they want to col-
lect through examples, and then automatically collect that information from pages that users visit
in the future.

With respect to the cognitive cost for collecting and extracting information in-situ, people
often have to reason and make a decision about which and how much information to capture
despite being uncertain about its future value [53, 58, 118, 148, 282]. In addition, such frequent
mental context switches away from reading and making sense of the actual web content can be
extra interruptive [124, 148, 239]. Before a user has built a good mental model of an information
space, they have to manage the tension between extracting too much information that later turns
out to be irrelevant, versus extracting too little information and later having to revisit webpages
to collect additional information. Recent work by Chang et al. [58] proposed one potential way
of easing the cognitive burden by allowing users to just create “fuzzy” selection of web content
on the go and defer the precise specification of what to capture and persist till a second pass.

2.2 Structuring
After collecting and extracting useful information, a user needs to synthesize it into structures
that are useful for interpreting the information space and achieving their goals of learning or
decision making. The idea of building structured representations of information has a history
dating back at least to the visions articulated by Vannevar Bush and others of associative memory,
spatial hypertext, and other means of extending the human intellect (e.g., [51, 82, 173, 189, 203]).
Since then, there have been many attempts at structuring web content, including lists, tables,
graphs, trees, mind maps, argument maps, and panels [278], however, empirical research has
found that using such tools can feel like “learning a new language” [146].

Prior work has explored various ways of incorporating lightweight information classification
into the foraging phase to leave clues and hints that scaffold later organization. For example,
Clipper [148] and Adamite [128] all prompt the user to optionally categorize an information clip
after it has just been captured. Spar.tag.us [126] enables users to associate custom tags with
individual paragraphs. ForSense [223] leverages natural language processing to automatically
cluster information clips based on themes and topics.

There have also been a number of research tools developed to support in-depth organizing
and structuring. These include the WebBook and WebForager by Card et al. [54], which use a
book metaphor to find, collect, and manage web pages; Butterfly by Mackinlay et al. [182] aimed
at accessing articles in citation networks; the Navigational View Builder [200] which combined
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structural and content analysis; Elastic Windows, which provided information overview and lo-
cation context [141]; Webcutter, which collects and presents URL collections in tree, star, and
fisheye views [181]; SenseMaker [32] for evolving collections of information; PadPrints [122], a
zoomable history browsing interface; and Scatter/Gather [70], a text-clustering interface for itera-
tively navigating through document collections. Related tools that support aspects of structuring
include extraction pattern approaches such as in [78], Stepping Stones and Pathways [72], Cat-
a-Cone [120], Data Mountain [226], TopicShop [26, 262], Hunter Gatherer [242], Haystack [142],
and Internet Scrapbook [257].

Despite these attempts, the dynamic and evolving nature of sensemaking – particularly in the
early stages – means that users often would avoid the cost of structuring or even committing to a
particular structure. Even if they do organize information, the structures that they created often
become obsolete as their mental representations evolve over the course of their investigation
(such as realizing a particular criterion should be prioritized, which prompts an entirely different
investigation of several new options, etc.), with no single type of structure likely to remain the
most appropriate throughout the whole sensemaking process [90,119,148]. Instead, people often
would try to keep everything in their working memory, which, unfortunately, is not unlimited
[43, 185, 229].

2.3 Evaluating and Reusing
Information and knowledge reuse has become a highly consistent paradigm across awide range of
fields and disciplines to advance their respective frontiers, such as reusing previous engineering
best practices on future generations of products [35,36], taking advantage of schemas and results
from previous sensemaking episodes to create new representations and understandings of the
world [90,147,198,215], and plugging in previously written and well-maintained design patterns
and code snippets to build novel software features and functionalities [4, 16, 96, 97, 155]. Reusing
proven information and knowledge promises the benefits of potentially reduced workload and
development cycles [35,155], improved quality and performance [97,112,274], and more time for
creation and innovation [135, 183, 187, 274].

Despite these benefits, consuming someone else’s sensemaking results can incur significant
costs, including deciding whether the initial user’s context is similar enough to their own for
that work to be relevant, and evaluating whether the initial user’s trustworthiness and thor-
oughness are sufficiently high to believe in their results. Prior work has reported various factors
that influence the evaluation of others’ work, including but not limited to: domain name and
URL, presence of a timestamp showing that the information is current or sufficiently up-to-date,
authors’ identification and indication of their expertise on the topic, citations to references or
scientific evidence, and user ratings or reviews [24, 45, 85, 92, 98, 167, 190, 191, 193, 250, 264, 273].
These factors are common across a wide range of reuse scenarios such as choosing software ar-
chitectures, libraries, and APIs, purchasing consumer products, handing-off or taking over design
and management projects, etc [33, 59, 112, 177, 187, 196, 245, 247, 254].

However, in reality, it has been repeatedly shown that people are often under-prepared and
have trouble determining how to evaluate others’ work [29,190,192,240], which is often deemed
to be too much effort [190, 245], having a high possibility of missing important details [191, 193].
As a result, users may end up starting from scratch rather than engaging in the potentially costly
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CHAPTER 2. BACKGROUND & RELATED WORK

consumption of someone else’s work if they are uncertain about how relevant and useful that
work will end up being [90, 174, 175, 191].

Over the years, many systems have been developed to support knowledge hand-off and reuse
during which the current sensemaker (subsequent user) needs to make sense of and evaluate the
appropriateness of reusing the results generated by a previous sensemaker (initial user) [187,245].
Variousmetadata and properties parallel to themain artifacts of sensemaking have been proposed
that would help subsequent users with this process, such as the awareness of the previous sense-
making process [79, 215] (e.g., search queries and visited web pages), the level of expertise of the
initial user [187,247], the context of the original sensemaking problem [187], and the initial user’s
design rationale [159, 160, 252]. However, it is both time and effort intensive for a sensemaker
to keep track of their rationale and processes with little immediate payoff, which is also often
for the benefit of others rather than themselves [177]. Even in situations where authors have the
explicit wish to help, they are often uncertain of what metadata and properties to provide and
how those can be instantiated using concrete signals that would be valuable to the consumers in
evaluating the reusability of their sensemaking results [245].
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Chapter 3

Unakite: Foraging and Organizing Online
Information

This chapter was adapted from my published papers:

Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng, Shaun Burley, Cynthia
Taylor, Aniket Kittur, and Brad A. Myers. 2019. “Unakite: Scaffolding Developers’ Decision-Making
Using the Web.” In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’19). Association for Computing Machinery, New York, NY, USA, 67–80.
Video: https://youtu.be/UMQ-kWgmbQ4
Jane Hsieh, Michael Xieyang Liu, Brad A. Myers and Aniket Kittur, “An Exploratory Study of Web
Foraging to Understand and Support Programming Decisions,” 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), 2018, pp. 305-306

3.1 Overview
Knowledge workers spend a significant portion of their time searching for solutions to their prob-
lems online. While numerous tools have been developed to support this exploratory process, in
many cases the answers to their questions involve trade-offs among multiple valid options and
not just a single solution.

In this chapter, we investigate this issue in the domain of programming and developers search-
ing for solutions to their programming problems online. Through interviews, we discovered that
developers express a desire for help with decision-making and understanding trade-offs. Through
an additional analysis of Stack Overflow posts, we observed that many answers describe such
trade-offs. These findings suggest that tools designed to help a developer capture information and
make decisions about trade-offs can provide crucial benefits for both the developers and others who
want to understand their design rationale.

We further probe this hypothesis with a prototype system named Unakite1 that collects,
organizes, andkeeps track of information about trade-offs and builds a comparison table
while searching and browsing, which can be saved as a design rationale for later use. Our
evaluation results show that Unakite reduces the cost of capturing tradeoff-related information

1Unakite is named after a pink and green semi-precious stone, and stands for “ Users Need Accelerators for
Knowledge for Implementations in Technology Environments”.
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Figure 3.1: Unakite’s user interfaces. With Unakite, a developer collects a snippet by selecting the desired content
(a1) or by drawing a bounding box around the desired content (while holding the Option / Alt key) (a2) and clicking
the “Save to U” button. The collected snippet immediately shows up under the “Uncategorized” tab in the snippet
repository (c) as a snippet card (d) inside the Unakite sidebar (e), which shows the current task at the top (“how to
represent matrices in numpy”) along with the drop-down menu to pick other tasks and various tools for the task.
The developer can quickly drag the snippet and drop it in one of the cells in the comparison table near the top (b).
(f1-f3) show the details of the three parts of each cell in the table where the snippet can be dropped.

by 45%, and that the resulting comparison table speeds up a subsequent developer’s ability to
understand the trade-offs by about a factor of three.

3.2 Formative Studies and Design Goals
To gain deeper insights into the barriers developers face about trade-offs, we performed two
formative studies.

3.2.1 Study1: Interview with Developers
First, we conducted a series of needs-finding interviews with developers to understand how they
currently collect and manage information about trade-offs in programming.

3.2.1.1 Methodology

Participants were a convenience sample of 15 developers (11 male, 4 female) recruited through
social media listings and mailing lists. To capture a variety of processes, we chose 5 professional
software developers, 2 doctoral students, and 8 master students. While we do not claim that
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this sample is representative of all developers, the interviews were very informative and helped
motivate the design of Unakite.

We began by asking how frequently participants made decisions about trade-offs when pro-
gramming. We then explored how they manage these situations. We asked the participants
to provide context by reviewing their browser histories and code bases to cue their recollections
while retrospectively describing recent projects or problems. We solicited their workflows, strate-
gies, mental models, frustrations, and needs. Finally, we wrapped up with questions probing their
experience with understanding programming decisions made by other developers.

3.2.1.2 Results

Making decisions about trade-offs is frequent in programming. Almost all programming
tasks described by participants involved some level of decision-making that required them to
choose among options. In fact, 13 out of 15 said that they were frequently swamped with ex-
ploring multiple possible options while trying to compare them based on various criteria, such as
the trade-offs among optimization methods when training neural nets (e.g., “stochastic gradient
descent”, “augmented Lagrangian”, etc.) (P9) and the balance between cost and performance when
picking cryptographic algorithms to protect users’ sensitive information (P13).
Participants’ browsing patterns and mental models for capturing trade-offs evolve as
they dig deeper into the decision space, with a common representation being a compar-
ison table. When approaching decision-making problems like picking a JavaScript framework
to build a web application (P10), developers generally expected to find a quick-fix style solution
at the beginning of their searching process. At this stage, they tended to only curate a short list
of solutions that fitted their initial constraints as they queued each in a different browser tab
for later reference, without pondering much about the advantages and disadvantages of each. As
they dug deeper into the decision space (sometimes voluntarily doing due diligence to investigate
multiple options before committing to something permanent (P4, P7), and other times because the
previous solution they tried failed), they started to discover new options, criteria, and trade-offs
that they were unaware of before. This naturally prompted them to go back to their earlier find-
ings and make comparisons. As reported, their mental models at this stage quickly evolved into a
comparison table, with its entries being filled according to information about whether an option
satisfied a particular criterion. These findings prompted us to further analyze the applicability of
tabular formats in synthesizing the trade-offs in programming problems, which we discuss in the
next section.

No matter how organized their tabular mental models might become in the end, most partic-
ipants reported that their exploration was inherently non-linear and tangled – there was no set
pattern that was followed to acquire all the relevant information they needed. For example, as
they went through web pages, they discovered new evidence, which in turn drove them to search
for or go back to a previous page to read in detail about another option or criterion that they
previously missed. This back-and-forth sensemaking process becomes particularly challenging,
as evidence is often spread across different web pages on different browser tabs, each with differ-
ent formats and structures. Additionally, participants often do not realize that there are various
trade-offs between options until they dig deeper into the decision space, at which point they are
already overloaded with information and lost in browser tabs, and it is hard for them to recall,
search for, or go back to previously missed content to fill in the blanks in their mental table.
These findings prompted us to offer various features in Unakite to help developers go back to
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previously visited content such as automatically keeping track of the source URL and the scroll
position when collecting information.
Both making decisions and understanding them later are difficult and cognitively de-
manding, and developers expressed a strong desire for tool support. 8 out of 15 said they
used general-purpose tools and methods like taking notes in Google Docs or using a web clipper
(such as that provided by Evernote) and reported problems such as: a high cost associated with
collecting content (P7: “…copy-pasting is just too much work, and I lose all the styling; while Ever-
note clipper clips the entire page, which is equivalent to not saving anything at all [because] I’d have
to re-find it later.” ); maintaining provenance (P15: “…whenever I save something, I always forget
to also save the URL [of the source].” ); synthesizing the new with existing content (P9: “Evernote
dumps everything I clip into a list of notes. There’s no way for me to organize them.”); and guiding
their exploration processes (P1: “… sometimes there’s just so much [evidence to find] that I often
don’t have a clue about what I’m supposed to search next.”). Additionally, participants reported
that another disadvantage of using Google Docs or other applications like Evernote is that they
must switch to another browser tab or application to access and organize their collected infor-
mation. Such frequent context switches are tedious and have been shown to harm developers’
productivity [102,144,194]. These findings inspired us to help developers easily externalize their
mental models when they are searching and browsing, by providing an easier method of tracking
and deciding among available options.

Almost half (7/15) of the participants admitted that they do not document their decisions
anywhere. An additional three said that they would only record important source URLs in code
comments. Interestingly, participants also discussed the difficulties in code comprehension, par-
ticularly when trying to understand code written by others that involved unexpected decisions.
They attributed the frustrations primarily to being unable to uncover the context of the decisions
and the original trade-offs, and fearing they might accidentally violate important yet hidden con-
straints that guided the original decision, which is congruent with prior research [152,158]. This
motivated Unakite to automatically keep track of the initial developer’s decision making trails
as the design rationale, unlike prior work where developers are forced to manually create docu-
mentation of decisions after they are made [212, 267].

3.2.2 Study 2: Analysis of Stack Overflow
Stack Overflow (SO) is an important tool for answering programming questions, and participants
cited it as their most frequently visited resource. Given this motivation, we undertook an analysis
to assess the proportion of questions on SO which capture trade-offs among multiple options and
to determine if the tabular format identified in the interviews is indeed an appropriate structure
for synthesizing these trade-offs.

We utilized two sets of posts for this analysis. First, we queried the 50 most viewed questions.
We were concerned about this sampling method as it may only represent a narrow set of topics
which happen to be the most popular, whereas the average developer may have more niche inter-
ests [38]. To obtain a sample of questions with a variety of topics that may be more representative
of the interests of the general population, we collected another 90 questions by querying for posts
created on a particular day which contained three or more answers. Through manual analysis
and construction of comparison tables using spreadsheets, we found that the trade-offs contained
in 88% of the 50 most-viewed and 49% of the 90 general population questions along with their
answers could be reasonably organized into tables. In fact, we found that some answers already
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included tables to summarize the trade-offs among the options, e.g., [8, 9]. Together with the re-
sults from the interviews, these findings motivated the design of Unakite’s organization features
that let users synthesize information about trade-offs into comparison tables.

3.2.3 Summary of Design Goals
Led by our formative findings and prior research discussed in chapter 2, we hypothesize that an
effective interface for decision making about trade-offs while sensemaking should support:

• Scaffolding: helping developers form systematic models when approaching decisionmak-
ing problems with trade-offs.

• Lightweight interactions: reducing the cost of collecting and organizing content so that
the entry barriers for developers to use the tool are low.

• Summarization: helping developers synthesize and summarize different pieces of content
together and manage them, as suggested by prior work [198, 286, 287].

• Contextualization: enabling developers to recreate the context from which information
snippets were collected and copied for better sensemaking [215, 234, 248].

3.3 Unakite
Guided by the design goals above, Unakite enables developers (both experienced and novice) to
easily collect any content from any web page into snippets (pieces of information) and organize
them by options, criteria, and evidence as they are searching and browsing the web, and thereby
keep track of their decision-making trails for later reference. Unakite is an extension to the
Chrome Web browser and a web application.

We first illustrate the experience of using Unakite by describing an example usage scenario
that embodies many of the use cases identified in our formative studies.

3.3.1 Example Usage Scenario
Sara, a junior professional developer, is tasked with writing Python code to handle matrix calcu-
lations for her company. As the code will be used in production, she wants to determine the best
way to represent matrices using numpy [10] before starting the implementation. She decides to
use Unakite to help her stay organized during her exploration process.

Sara logs into Unakite, enables it on her current web pages, brings out the Unakite sidebar
(Figure 3.1-e), and selects “Create a new task”, entering “how to represent matrices in numpy” as
the task name. Next, she starts a Google search on this topic.

As she goes through the search results, she comes across an SO page about the differences
between numpy matrix and numpy array. She then quickly collects text describing both numpy
matrix and numpy array into the task snippet repository by just selecting the text and click the
“Save to U” button that pops up (Figure 3.1-a1). The collected snippets immediately appear under
the “Uncategorized” tab (Figure 3.1-c).

Continuing on, she comes across several criteria that seem to be good standards to evaluate
which of the two options she just discovered is better. For example, she thinks that “having a
convenient notation for matrix multiplication like a*b” is essential for the readability of the code.
Therefore, Sara collects those criteria using the same mechanism.
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Figure 3.2: “Teleporting” content directly into the comparison table as a piece of evidence.

As the number of collected snippets gets larger, Sara decides to quickly organize them by
simply dragging and dropping each snippet into the comparison table (automatically created
along with the task) above the snippet repository in the sidebar (Figure 3.1-b). For example, she
drags numpy matrix into one of the row headers as an option (e.g., a possible solution to solve
the task). After a basic table structure is laid out, she realizes that an optimal method should not
be deprecated in the future, so she clicks the blue “plus” button to create a new column and types
in “having long-term support” as a new criterion. As it’s not one of her immediate concerns, she
drags that column to be the last one in the table.

To save a section of the SO page that compares the two options in terms of the criteria she
just collected, Sara uses the snapshot feature (holding the Option / Alt key and using the mouse
to drag on screen) to draw a bounding box around that section (Figure 3.1-a2). Instead of clicking
the “Save to U” button to save it as a snippet and then drag it into the table (which she certainly
can), Sara uses the teleport feature (Figure 3.2) by clicking on one of the rating icons in the cor-
responding table cells to directly save the snapshot as a snippet and use it as a piece of evidence.
For example, she gives numpy matrix a “thumbs-up” (positive rating) for “having a convenient
notation for matrix multiplication like a*b” and numpy array a “thumbs-down” (negative rating)
for “having built-in support for inverse and other matrix operations”. Alternatively, developers
could also label a snippet as “informational” if it does not have a positive or negative effect on
their decision (Figure 3.1-f1,f2,f3).

After filling up the table with options, criteria, and ratings (evidence), Sara now feels clear
that numpy matrix should be the better choice, so she clicks the green “Choose this option”
button (Figure 3.1-b1) next to that option to indicate it was chosen. She wants to document her
decision in the company’s internal documentation site. The table she organized, along with all
the information snippets she collected, is automatically preserved by Unakite for the current task.
She clicks the “Open task detail page” button to open the task in the Unakite dashboard web app,
copies the URL from the address bar, and pastes it into her code documentation with “Here’s how
I decided to choose numpy matrix”.

A year later, Larry comes in and reads the code along with the Unakite table that Sara created.
He glances the ratings and checks the evidence snippets by mousing over the rating icons. He
quickly understands Sara’s decision, and realizes the opportunity to switch to using a numpy
array since now the code needs to be able to perform vector operations in arbitrary dimensions
and be supported in the long term, both of which are criteria that Sara identified previously.
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Once a snippet is selected (showing a red 
border), its locations in the table are highlighted.

Figure 3.3: A snippet used as evidence in multiple cells. Selecting a snippet will highlight its location(s) in the table.

3.3.2 Detailed Design
3.3.2.1 Scaffolding

Unakite provides developers with scaffolding when managing decision making tasks that involve
trade-offs by offering the “Option-Criterion-Evidence” (OCE) framework as illustrated in the ex-
ample scenario. A user can create as many tasks as desired, where typically each task represents
a different decision. For each task, the information is organized in a tabular format (Figure 3.1-b)
where options are the row headers, criteria are the column headers, and pieces of evidence are
spread across the rest of the cells.

We provide this framework for several reasons. As mentioned in the interview study results,
developers’ mental model for capturing trade-offs is similar, but less organized, to that described
in this framework. Formalizing it provides a concrete framing for developers to think about
decisions in a structured way that they are already familiar with. Another aim of providing this
structured framework is to encourage developers to think about trade-offs from the start to avoid
the unnecessary frustrations later on (as described in the interview results).

3.3.2.2 Lightweight Interactions

Unakite offers various lightweight interactions to collect information and organize them accord-
ing to the OCE framework. It provides two intuitive ways to collect any content from any web
page. The first is selecting the desired content using the cursor in the normal way, and then click-
ing the “Save to U” button that pops up (Figure 3.1-a1). Another way to collect large pieces of
information (code snippets that span multiple lines, columns or sub-sections of tables, pictures,
etc.) is to use the snapshot feature: drawing a bounding box around the desired content (Fig-
ure 3.1-a2 and Figure 3.2) and clicking the “Save to U” button. These interactions are carefully
designed based on developers’ natural habits of copying-and-pasting content and links and tak-
ing screenshots without introducing an extra cognitive load of learning a new interaction, and
thereby reducing the starting cost for developers to use Unakite.

Unlike previous tools where information was saved either in pure text format [147,148] or as
raw HTML without CSS styling [279], Unakite combines the best of both copying-and-pasting
and taking screenshots by capturing, saving and later showing the content of a snippet with its
original styling and including the rich, interactive multimedia objects supported by HTML, like
images and links. This feature makes the content in snippets more understandable and useful, and
also helps developers quickly recognize a particular snippet among many others in the repository
by its appearance. Typically, developers will include example code in the snippets as copied from
SO and other sources, and Unakite is careful to preserve the formatting of the code, so it can later
be copy-and-pasted into the user’s code once a decision to use it has been made.
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The collected snippets will be displayed in the current tasks’ snippet repository (Figure 3.1-
c), which serves as a container that holds all the collected snippets in the form of snippet cards
(Figure 3.1-d). One of the benefits of having this repository is that it serves as an information
buffer between the web and the comparison table: as recommended by Kittur et al. [148], a “two-
stage” model in which information is first saved and then organized, results in a better “structured
information space”.

To solve the problem of frequent context switches (identified in the interview study), Unakite
brings the ability to access and organize collected information directly into the browser tab that
the developer is currently using – Unakite provides a sidebar (inspired by [269,270]) on the right
side of the current window (Figure 3.1-e) containing the comparison table (Figure 3.1-b) and
the aforementioned snippet repository. There are several major advantages for developers using
the Unakite sidebar. It serves as a comprehensive dashboard that contains both the collected
information and the ability to organize them into comparison tables (discussed later in detail) all
in a small footprint. Unlike PlayByPlay [279] in which the sidebar lives in a part of the browser UI,
Unakite’s sidebar is directly injected into theDOM tree and therefore can provide rich interactions
with the original web page. The sidebar can be toggled in and out like a drawer using the keyboard
shortcut Ctrl + ̀ (backtick) or using the “Open/Close Unakite Sidebar” button on the bottom
right of the window. When it opens, it automatically shrinks the width of the web page body to
make sure nothing is visually hidden.

Unakite provides easy and intuitive interactions such as drag-and-drop, allowing users a va-
riety of ways to quickly organize the collected information into a comparison table. A developer
can drag a snippet card from the snippet repository and drop it into the table as either a row
header (so it is an option), a column header (as a criterion), or into a cell as a piece of evidence,
just as Sara did. Inspired by prior work [198], one can “rate” a snippet as either a positive (shown
as a “thumbs-up” rating icon, see Figure 3.1-f1), negative (shown as a “thumbs-down” rating icon,
see Figure 3.1-f2), or informational (shown as an “info” rating icon, see Figure 3.1-f3) piece of evi-
dence. Moreover, a snippet can be reused as the evidence in multiple cells. Selecting a snippet (by
clicking on it, see Figure 3.3) in the snippet repository will reveal its location(s) in the comparison
table, and selecting an icon in the table opens the corresponding snippet in the repository.

There are two additional shortcuts to put snippets directly into a table. To collect some con-
tent as an option or a criterion, one can mouse over the “Save to U” button and click the “Option”
or the “Criterion” button (Figure 3.4) that appears below. This is modeled after the various op-
tions for “liking” in Facebook. In addition to collecting the desired content as a snippet, this will
automatically create a new row or column in the comparison table. Another shortcut is the tele-
port feature that Sara used above (Figure 3.2). These shortcuts are enabled by and add additional
benefits to Unakite’s always-available sidebar. Together with the other features described above,
users have the flexibility to capture and organize their knowledge in various ways and in any
order without needing to follow a preset process.

As illustrated in the example scenario, every Unakite task, including all of its snippets and
comparison tables, can be accessed in the Unakite web app via a unique URL in any browser.
This makes sharing and keeping track of one’s decision easier and more powerful: developers
can choose to share the link to a task via email to their friends and colleagues to show how
and why the decision was made, and the link can be embedded in documentation or comments
in code, preserving the actual trade-offs and design rationale in addition to where any example
code was copied from.
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Figure 3.4: Mousing over the “Save to U” clip button will reveal three additional buttons to collect the desired
content specifically as a snippet, an option, or a criterion.

3.3.2.3 Summarization

Unakite introduces several levels of summarization to help developers manage and digest infor-
mation.

The comparison table provides a high-level summary of the decision making space and the
trade-offs among various options. It offers a clear and glanceable picture of the advantages and
disadvantages of each option through the “thumbs-up” and “thumbs-down” rating icons without
having to expose the nitty-gritty details of the evidence content, which is useful both for the
developer making the decision and later code readers, as shown in the example scenario. Ad-
ditionally, it serves as a presentation of one’s exploration progress that helps users understand
which part of the decision space has been explored and which has not (revealed in the interview
studies as an important clue developers need when exploring multiple options). For example, the
empty cells in the table provide developers with clues about where they need to focus next.

The individual rating icons provide another level of summary of their corresponding sup-
porting evidence. Unlike in previous summarization tools [287] where contents are recursively
summarized into words, Unakite encourages the user to parse out the information in a snippet
that captures the relationship between an option and a criterion, and represent them as rating
icons. We believe this mechanism can usually capture developers’ information needs of whether
an option satisfies a specific criterion, as identified in the formative interviews. One can also
manually add a rating leveraging their prior knowledge directly in the table by clicking the “Add
a snippet” button on the top right of the table cells, and just type or paste. To dig into the detailed
evidence of each rating, users can simply click on those icons in the sidebar tables or mouse over
the icons in the Unakite web app to reveal the supporting snippet card.

In addition to the built-in summarization mechanisms above, Unakite also enables users to
note down their own summaries in various places. Users can easily edit the snippet title (Figure
3.1-d1) in the snippet card to be something more summative. For example, for a long snippet that
talks about the performance advantages of React [86] over Angular [104], a usermay summarize it
as “React apps load faster than Angular ones.” There is also a text box in each table cell for users to
summarize all the evidence in that cell or keep track of the evidence that cannot easily be captured
by rating icons, such as prices and speed. Moreover, one can add comments to snippets (Figure
3.1-d4), table cells, and tasks about their opinions, thoughts, or the results of their experiments
with an option, etc. These were added based on feedback that developers needed more flexibility
to add comments and content in many places.

3.3.2.4 Contextualization

Meta information such as the URL of the sourceweb page (Figure 3.1-d2) and the time of collection
(Figure 3.1-d3) are automatically recorded along with the snippet and displayed on the snippet
card in Unakite. Using this feature, developers are able to go back to the web page where a snippet
was collected. Unakite will even help developers to go back to the exact scroll position where the
snippet was collected if possible, saving the extra effort of locating it on a web page. The time
when a snippet was collected is especially useful in giving developers a rough estimate of the age
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of the information and helping them determine whether it is still valid (e.g., API methods might
be deprecated or trade-offs might change in newer library versions).

3.4 Evaluation
We conducted two initial user studies of the Unakite system in order to answer the following
questions:

• Can developers collect and organize information using Unakite?
• How does Unakite compare to currently available tools like Google Docs?
• Do Unakite tables offer value over just reading through web pages when trying to under-
stand the design rationale?

• How can the design of Unakite be improved?

3.4.1 Study 1 - Authoring Unakite Tables
We carried out a study to evaluate developers’ ability to use Unakite to collect and organize
information about trade-offs.

3.4.1.1 Procedure

We recruited 20 participants (15 male, 5 female) aged 23-37 (µ = 26.75, σ = 3.49) from a local re-
search participation pool. The participants were required to be 18 or older, to be fluent in English,
and to be experienced in programming. Participants had on average 8.8 years of programming ex-
perience, with the longest being around 15 years. 13 participants had professional programming
experience, with the rest having experience in college.

In this study, participants were first presented with two tasks each: (A) how to invoke a func-
tion in JavaScript and (B) how to create or update a resource using REST APIs. For each task, they
started from scratch without using any information snippets from previous tasks. The study was
a between-subjects design, where participants were randomly assigned to either the Unakite or
the control condition. In the Unakite condition, participants were given a static web page adapted
from a real Stack Overflow page discussing the task topic in each task. Participants were asked
to use Unakite to collect and organize information from that single page into a comparison table,
and were instructed to inform the researcher when they thought they had finished the task or felt
like they could make no further progress. In the control condition, participants were asked to do
the same but to build comparison tables using Google Docs instead. We deemed Google Docs as
a proper baseline since: 1) it was reported in the formative study as a common tool people use to
take notes while making decisions; 2) all participants in this user study were already proficient in
using it; 3) compared to other solutions like spreadsheets, it can be easily used to capture richer
contexts such as formatted text (example code), images (screenshots of execution results), and
links (URLs of documentation and tutorial pages).

All participants were then given a third task in which they were asked to use Unakite to help
them understand the trade-offs and make decisions on whatever programming problems they
were trying to solve in real life.

Participants in the Unakite condition were given a 10-minute tutorial showcasing the various
features of Unakite and a 5-minute practice session before starting. Those in the control condition
were given the same tutorial and practice session before the third task. At the end of the study, the
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# manually created snippets / # snippets # options # criteria # ratings # positive ratings # negative ratings # info ratings
Task 1 0.70 (1.34) / 12.10 (3.38) 2.30 (0.67) 2.70 (1.57) 8.80 (4.10) 3.00 (1.89) 1.80 (2.30) 4.00 (3.80)
Task 2 1.20 (3.16) / 17.50 (4.48) 2.60 (0.52) 4.60 (2.07) 13.20 (4.42) 7.70 (4.08) 2.60 (2.46) 2.90 (2.42)
Task 3 2.00 (3.77) / 18.89 (8.31) 3.74 (1.37) 4.74 (2.58) 12.58 (8.87) 6.37 (5.24) 3.84 (4.29) 2.37 (2.52)

Table 3.1: Statistics for various Unakite feature usages in Study 1. Statistics are presented in the form of mean
(standard deviation) in the table.

researcher conducted a survey and an interview eliciting subjective feedback on the Unakite ex-
perience. In particular, participants were asked to list 3 of their favorite features as well as 3 least
favorite features or possible improvements of Unakite. The study took about 80 minutes per par-
ticipant, using a designated MacBook Pro computer with Chrome and Unakite installed. All tasks
were screen-recorded for later analysis. All participants were compensated $20 for their time.

3.4.1.2 Results

All participants were able to complete all of the tasks in both conditions. As shown by the statis-
tics in Table 3.1, the Unakite participants were able to use the various features to collect and
organize information into comparison tables.

To examine how Unakite performs compared to the control condition, we opted to compare
the overhead cost of using both tools to collect and organize information. For the Unakite condi-
tion, the overhead cost is defined as the portion of the time participants spent on directly using
Unakite features (selecting, snapshotting, dragging snippets into the comparison table, etc.) out
of the total time they used for a task, since the rest of the time was spent reading and understand-
ing the Stack Overflow page. Similarly, for the control condition, the overhead cost was calculated
as the percent of time participants spent on copy-and-pasting content, making screenshots, and
staying on the Google Docs browser tab to organize the table.

We conducted a mixed-effect linear regression with overhead cost as the outcome, condition,
task, and their interaction as fixed effects. Since participants may have different abilities in per-
forming the tasks, we included a random intercept for each participant. Results show that the
overhead cost when using Unakite is significantly lower (coefficient=−0.22, t(18) =−4.81, p =
0.0001) than the control condition, while task (coefficient =−0.05, t(18) = −1.40, p = 0.1777)
and the interaction term (coefficient= 0.04, t(18) = 0.71, p = 0.4861) does not have an effect on
the overhead cost. Across both tasks, the average overhead cost was reduced by 45% when using
Unakite (Mean overhead cost= 25%, SD= 0.07) compared to using Google Docs (Mean= 44%,
SD = 0.12). Thus, using Google Docs did add a lot of extra time, whereas using Unakite, even
though unfamiliar, was quick and non-disruptive.

In the survey, participants reported (in 7-point Likert scales) that they thought the interactions
with Unakite were understandable and clear (Mean = 6.20, Median = 6.00, 95% CIs = [5.84, 6.56]),
they enjoyed Unakite’s features (Mean = 6.00, Median = 6.00, 95% CIs = [5.52, 6.48]), and would
recommend Unakite to friends and colleagues doing programming work (Mean = 6.20, Median =
6.50, 95% CIs = [5.75, 6.65]).

Nine of the 20 participants requested that we send them the URL of their third task that they
created using Unakite for reference and five of them asked us to help them install Unakite on
their computer for personal use and future updates, highlighting both the utility of the system as
well as the realism of the tasks they chose. Figure 3.5 shows P13’s table capturing the trade-offs
in choosing JavaScript front-end frameworks.

Another highlight in the study is that P3, P10, and P18 decided to either commit or switch
to the option they identified as the best option after using Unakite to build comparison tables on
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Figure 3.5: Participant P13’s comparison table capturing the trade-offs in choosing JavaScript front-end frameworks.

the topic of their choosing. For example, P3 researched on hybrid AR development frameworks
that can take advantage of both ARCore [11] on Android and ARKit [12] on iOS, and found
ViroReact [14] to be the best choice. A quick follow-up interview a week later revealed that he
had already begun using that framework, and it did satisfy all of his needs so far.

3.4.2 Study 2 - Understanding Unakite Tables
We carried out a second study to evaluate whether developers could understand the trade-offs
encapsulated in comparison tables and snippets previously built by others using Unakite.

3.4.2.1 Procedure

We recruited 16 participants (9 male, 7 female) aged 21-32 (µ = 25.3, σ = 3.19) from the same local
participation pool as in Study 1 (but no-one participated in both studies). Participants had on
average 7.8 years of programming experience, with the longest being 17 years. None of themwere
familiar with either the topics involved in this study or Unakite. The study took about 40 minutes
per participant, using the same setup as in Study 1. All participants were compensated $15.

Participants were given a 10-minute tutorial showcasing the various features of the Unakite
web app. The study was a within-subjects design, where the participants were presented with
two tasks of roughly equal difficulty and were asked to solve one of themwith the help of Unakite
and the other by reading through a set of web pages, in a counterbalanced order. For each task,
participants were given some code written by the researcher to solve a problem, some neces-
sary background information about the problem, and a list of options that were available to solve
it. They were then asked to explain why the decision was made to choose the particular option
used in the code and the associated trade-offs. In the experimental condition, participants were
provided with a previously-built structure (including the comparison table and the snippet repos-
itory) through the Unakite web app, while in the control condition, participants were instructed
to only read through the set of web pages that the structure in the experimental condition was
built from. Specifically, the two tasks were to explain the decision and the trade-offs of:

• Choosing numpy array with Python 3.5+ instead of numpy matrix or numpy array with Python
2.7 to perform some matrix calculations like multiplication, inversion, element-wise multiplication, etc.

• Choosing numpy array instead of Python list or Python array to hold data involved in large-scale
numerical manipulations such as regression analysis.

To ensure realism, both tasks were based on actual questions asked and answered on Stack
Overflow that are heatedly discussed and well-maintained by real developers.

3.4.2.2 Results

Two researchers each listed all possible explanations to the two tasks independently. After re-
solving conflicts, we produced a list of possible explanations for each task as the gold standard.
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Figure 3.6: Box plot of the average task completion time for the participants under different conditions: Unakite vs.
Control in Study 2.

To quantitatively evaluate participants’ performance, we measured the time it took for them to
offer three legitimate explanations - those within the gold standard list - in each condition, which
all participants were able to accomplish.

A two-way repeated measures ANOVA was conducted to examine the within-subject effects
of condition (Unakite vs. Control) and task (A vs. B) on task completion time. There was a
statistically significant effect of condition (F(1,26) = 25.59, p < .001) such that participants
completed tasks significantly faster (almost 3 times faster) with Unakite (Mean = 114.63s, SD =
38.91s) than in the control condition (Mean = 332.56s, SD = 56.26s), as visualized in Figure 3.6.
There was no significant effect of task (F(1,26) = 0.01, p = 0.94), indicating the two tasks were
indeed of roughly equal difficulty.

3.4.3 Evaluation Discussion
3.4.3.1 Usability and Usefulness of Unakite’s features

The snippet collection features, including both the selecting and the snapshot features, were con-
sidered highly useful, with 15 participants citing them as one of their favorite features. Partici-
pants said they were “the perfect combination of copy-pasting and taking screenshots” (P15) with
the additional benefits of “retaining the original styling [of the collected content], especially when
there’s code” (P9), “keeping track of the [source] URL” (P7), and “saving [users] some typing” (P5).
The drag-and-drop interactions were also popular, receiving 13 mentions in participants’ “top
three” lists, primarily due to its ease of use (P18: “it is natural, like picking things up and dropping
them in buckets” ). Participants also appreciated that the design of the Unakite UI is clean and easy
to learn (12/20), and the overall experience was satisfying (10/20). The sharing via URL feature
also received nine mentions, with participants laying out potential usage scenarios like “putting
it in code comments or [their lab’s] internal documentions” (P11), “using it for presentations in code
reviews” (P8), “attaching it in emails that explain my code” (P5), etc.

Compared with using Google Docs, P15 praised the value of Unakite’s snippet repository
functioning as an information buffer: “It’s like a note-taking space. I can just easily grab as much
info that’s related to my topic as I want, and they don’t have to directly fit into the table, but can be
something interesting to use later on; whereas in Google Docs, the cost of buffering these interesting
snippets somewhere is pretty high.”

Participants have mixed opinions on how summarization works in Unakite. Most of them
(16/20) agreed that summarizing snippets into positive, negative, or informational icons alleviates
their burden of having to manually look at the content of each snippet every time, and makes
the comparison tables much more skimmable, e.g., “visual interpretation of thumbs ups and downs
provides a quick summary” (P18). However, P17 also pointed out that “value comparisons between
criteria (columns) are difficult,” suggesting some notion of weight should be applied differently to
the columns when construing the table. P3 indicated that the meaning for the thumbs-up/down
icons is open for interpretation in a sense that “having more thumbs-ups does not necessarily mean
[that an option] is better [in terms of a criterion], it could simply mean that the author found more
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positive evidence, unless she specifies that [more means better] in the first place.” Based on these
valuable insights, we believe that there are new interface design opportunities for us to explore
in Unakite so that the value of the comparison tables could be further improved.

3.4.3.2 Usage Patterns

Similar to whatMorris et al. found [198], there was an unbalanced use of the positive and negative
ratings in the study: positives (228 in total) are more heavily used than negatives (117 in total).
A possible explanation for this asymmetry is that people in general lean towards finding and
keeping track of evidence of what “works” rather than what “doesn’t work”.

Participants exhibited twomajor usage patternswhen interactingwith Unakite: (1) collecting-
oriented: alternating between long collecting stages (in which they keep collecting content into
the snippet repository) and short organizing stages (in which they focus on putting the collected
snippets into the comparison table); or (2) organizing-oriented: all snippets going directly into
the comparison table immediately after they are collected. We are delighted that interactions in
Unakite are flexible enough to support both usage patterns equally well.

3.5 Discussion and Future Work
Seven of the participants (Study 1 & 2 combined) whowere involved in decisionmaking processes
in the industry suggested that Unakite has the potential to become a collaborative platform for
developers to cooperate on decision making processes. This is in line with our vision to add sup-
port in Unakite for both asynchronous and synchronous collaborations in the future. Presently,
Unakite focuses on recording a static snapshot of a single developer’s decision making trails that
is read-only to other developers. In future iterations, one could work on mechanisms that en-
able later developers to “own” or “contribute” to the structures so that they stay relevant and
informative throughout the course of a software engineering project. For example, inspired by
Git and other local version control tools such as Variolite [145], one can explore the opportu-
nity of introducing lightweight versioning into Unakite, possibly integrated with code versions,
thereby realizing asynchronous collaborations. Suggested by collaborative systems like Search-
Together [198] and CoSense [215], additional “awareness” and “division of labor” features can be
implemented to transform Unakite into a synchronous collaboration platform.

To support cases in which the needs for collecting and organizing information are not discov-
ered until partway through an investigation process, future research can explore automatically
summarizing exploration paths in the background so that developers can retroactively organize
their work with reduced overhead. This is, in fact, explored to some extent in our Crystalline
system discussed in chapter 4.

One can also investigate the use of Unakite as a pedagogical tool. Many areas of computer
science (e.g., data structures, systems) require students to consider different options in terms of
trade-offs, rather than determining a single correct answer. Anecdotally, many students find this
difficult. The exercise of creating a comparison table to explicitly compare multiple options for a
task (e.g., using a stack or a queue to build an undo function) would force students to explicitly
determine the criteria necessary for the task, gather evidence to support ratings, and make an
educated decision based on these ratings.
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Chapter 4

Crystalline: Automating Information
Collection and Organization

This chapter was adapted from my published paper:

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2022. “Crystalline: Lowering the Cost for
Developers to Collect and Organize Information for Decision Making.” In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 68, 1–16.
Video: https://youtu.be/VO-osTVGuJs

4.1 Overview
Our previous system Unakite encouraged authors to document their decision making processes
and results using the tool’s lightweight collecting and organizing features. However, it remains
a laborious process for people to manually identify and clip content, maintaining its provenance
and synthesizing it with other content. Prior work suggests that one cause is that people are often
uncertain about which information will eventually turn out to be relevant, valuable, and worth
capturing, especially at early stages of their learning and exploration when they are overloaded
with information [34, 90]. Under these circumstances, people are hesitant to frequently pause
and shift their focus from the investigation itself to reasoning about what to capture for later
use [58, 124, 148, 239], or they could be too engaged in the sensemaking process and forget to
collect anything at all. Furthermore, people’s needs for collecting and organizing information
are often not discovered until part of the way through an investigation process, such as realizing
there exists much more factors to consider than originally anticipated [68, 80, 81].

In this chapter, we explore the idea of having a system dynamically help users keep track of
and organize information by leveraging the content they are browsing and the signals from their
browsing behavior. We instantiate this idea in a prototype system called Crystalline1, which plays
the role of a user’s copilot and attempts to automatically identify and keep track of the options,
criteria, and the corresponding evidence snippets from the web pages that a user has viewed,

1Crystalline is named after rocks made up of interlocking crystals. It stands for Clipping Resulting in Your
Structure as Tables And Lists Linked to Implicit Notetaking Easily.
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Figure 4.1: Crystalline’s list view UI (a). As the developer browses a web page (b), Crystalline attempts to auto-
matically collect options and criteria from the page, and display them in the options (c) and criteria panes (d) in the
sidebar (a). In addition, Crystalline leverages natural language processing to automatically group similar criteria
together, as shown by the multiple-pages icon (e). Crystalline uses behavioral signals such as mouse movement and
dwell time to try to automatically detect the relative importance of the criteria (shown by the display order, with
most important at the top). Users can use the “See more” and “See less” buttons (g) to adjust how many criteria
are to be displayed at once. Crystalline will remind users of the existence of additional related evidence through a
red notification dot at the top right of a criterion (f). The sidebar can be toggled in and out by clicking the browser
extension icon (h). Users may pin (i) important criteria to the top of the list.

and organize the snippets into both list and tabular formats with prioritization. To achieve this,
Crystalline mines a variety of behavioral signals while a user browses the web, including scrolling
patterns and mouse cursor actions, and employs natural language understanding techniques to
automatically classify and organize the collected content. The goal is that users can focus more
on reading and understanding web content while occasionally guiding the system when it makes
mistakes. Our lab study suggests that users are able to create comparison tables about 20% faster
with a 60% reduction in operational cost without sacrificing the quality of the tables.

4.2 Background and Design Goals
To ground our research, we build on the “Option-Criterion-Evidence” framework introduced in
our Unakite system. We first briefly review the prior work on implicit behavioral patterns that
people naturally exhibit while browsing the web that inspired our investigation. Then we discuss
the design goals for the new Crystalline system.
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4.2.1 Implicit Behavioral Signals When Using the Web
Prior research has investigated various implicit behavioral patterns that people exhibit when
reading and interacting with content on a digital screen. One thread of research has explored
using behaviors such as dwell time, cursor movements, clicks, scrolling patterns, and gaze posi-
tions as implicit signals to approximate user interest on web pages as well as search result rele-
vance [67,109,110,123,134]. For example, Claypool et al. [67] had participants use a custom-built
browser to surf the web and concluded that the time spent on a page, the amount of scrolling
on a page, and the combination of time and scrolling had a strong correlation with explicit user
interest. In addition, Hijikata [123] discovered that actions such as text tracing and link pointing
are decent behavioral indicators for perceived interesting segments of web pages. Similarly, in
the domain of web searches, Buscher et al. [48,49,50], Guo and Agichtein [109,110], and Huang et
al. [134] demonstrated that eye tracking, as well as interactions like scrolling and cursor hovers,
could accurately predict user interests in search results pages.

Building on such empirical understanding, we explore putting a combination of these implicit
behavioral signals into use to approximate user visual attention in a working prototype. We used
heuristics and pilot testing to devise mechanisms that translate the raw behavioral signals into
numeric scores representing the “amount of attention” a user has given to a particular piece of
online content. We then use these scores to filter out and rank the content of the evolving compar-
ison table, further reducing the cost for developers to manually manage and prioritize collected
information incrementally as they are searching and browsing.

4.2.2 Design Goals
In order to address the limitations of using Unakite as well as other similar sensemaking tools
[32, 39, 61, 215] discussed in section 4.1, we formulated the following design goals:

• Minimize the cost to collect information. The system should attempt to automatically
collect information in the background without the user’s specific attention or direction.
This will help users focus on the main task of reading and comprehending the content.

• Actively filter, organize, and prioritize information. The system should actively filter,
organize, and prioritize the collected information that gets presented to the user and help
the user avoid information overload.

• Reduce the cost of incorrect automation support. In cases where machine support
is incorrect or undesirable, the system should allow users to easily recover from those
mistakes [28, 129].

4.3 Crystalline

4.3.1 System Overview
Guided by prior work and our design goals, we designed and implemented Crystalline, a Chrome
extension prototype to help developers automatically collect and organize information relevant
to their decision making problems.

Usersmainly interact with Crystalline through a sidebar (Figure 4.1-a) that is injected directly
into every web page. As a developer opens and reads web pages, the sidebar will be updated with
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Zoomed-in evidence snippetb

d

Figure 4.2: Additional Crystalline’s user interfaces. Clicking on one of the criterion in the criteria pane (Figure 4.1-
d) will enter a detailed view for that criterion (a), listing out all the collected evidence snippets organized by options.
Users can zoom in on an evidence snippet (b) by moving the mouse cursor over it in the detailed view until the cursor
becomes a magnifying glass. Crystalline will actively look for and remind users of evidence for the same or similar
criteria from pages that users have visited but have not yet paid attention to (d). Finally, similar to Unakite [177],
Crystalline offers a comparison table view (c) that summarizes the decision making space and the trade-offs among
various options in detail.

the automatically collected options (Figure 4.1-c) and criteria (Figure 4.1-d) in the list view (Figure
4.1-c & -d). The list view serves as a concise and glanceable outline that reflects one’s exploration
progress — what options one has encountered and what criteria one has looked into. Clicking
on one of the criteria will enter a detailed view for that criterion (Figure 4.2-a), listing out all the
collected evidence snippets organized by options; similarly, clicking on an option will enter the
detailed view for that option, which lists all the related criteria and the corresponding evidence
associated with that option. Details on how we currently implemented the automatic collection
and organization features are discussed in section 4.3.2.

In addition, developers can also switch to the comparison table view (Figure 4.2-c) that sum-
marizes the decision making space and the trade-offs among various options in detail. The order
in which a criterion gets presented both in the list and the comparison table view are based on the
estimated importance of the item to the user, which we approximate by the amount of attention a
user has given to it. This, in turn, is derived from the user’s implicit behavioral signals, which we
will discuss in detail in section 4.3.2.2. To examine a particular piece of evidence in the detailed
view or a comparison table cell, users can hover on it to zoom in (Figure 4.2-b), or click on it to
teleport to the original web page and scroll position from where it was previously collected.

Similar to previous systems [128,177,223], the sidebar can be toggled in and out like a drawer
by clicking the extension icon (Figure 4.1-h) or using a keyboard shortcut. Developers can pas-
sively monitor the sidebar as they are searching and browsing to make sure the system performs
correctly, and quickly correct or dismiss the mistakes that the system makes. In addition, de-
velopers are free to hide the sidebar to have an unobstructed view of the web page, knowing
that all the features for automatic information collection and organization are still running in the
background even if the sidebar is in the hidden state.
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4.3.2 Detailed Design
We now discuss how the different features in Crystalline are designed and implemented, and how
they support our design goals.

4.3.2.1 Collecting information about options and criteria

In Crystalline, we explore having the system automatically collect relevant information in the
background without the user having to explicitly perform the action of collecting information.
This has the benefit of minimizing the distraction and cost of keeping track of information as an
extra step in addition to thinking about the content on a web page, which, in turn, maximizes a
user’s attention to reading and understanding the content itself.

Specifically, Crystalline collects information about options, criteria, and their associated ev-
idence snippets as discussed previously, which was reported by prior work as the key aspects
developers look for when solving decision making problems [131, 159, 177]. Currently, to au-
tomatically recognize the options, Crystalline employs the following techniques: (1) it looks for
the word or phrase between any instances of “vs.” (or other variants like “v.s.”, “versus”, etc.) in
web page titles and opening paragraphs and adds them as potential options. For example, the
Medium.com article titled “Tensorflow vs Keras vs Pytorch: Which Framework is the Best?”2

would yield “Tensorflow”, “Keras”, and “Pytorch” as three potential options; (2) it first runs noun
phrase and entity extractions using the Google Cloud Natural Language API [105] on the web
page title, section headers as well as the column and row headers of any HTML tables, then
checks if the identified entities are mentioned in the titles of other visited pages. In addition, it
also checks if the identified entities would frequently come up in each other’s Google autocom-
plete results (the Google “vs” technique is described in [94,178], which issues queries in the form
of “[option_name] vs” to the Google Autocomplete API to get a list of autocomplete results that
can be interpreted as potential alternatives to “[option_name]”. An earlier version of this tech-
nique was launched as an experimental feature named Google Sets [65]). Furthermore, it checks
if the identified entities are mentioned repeatedly across the main content of the current web
page. All potential options will go through a final deduplication process to produce the final list
of options presented in the options pane (Figure 4.1-c) in the sidebar. We chose and tuned these
heuristics based on our internal usage and pilot testing results. In the future, more advanced NLP
techniques could be used to augment the current set of heuristics.

Crystalline uses a similar set of heuristics to identify criteria from the web pages, with an
emphasis on examining section headers and table headers (and entities extracted from them)
rather thanwebsite titles. In this work and in the context of programming, we focus on using such
heuristics to identify the criteria directly mentioned in the content, such as extracting “learning
curve” from “React is widely considered to have quite a steep learning curve.” We leave the
extraction of latent criteria for futurework, which aremore commonly seen in domains other than
programming, such as extracting “price” from “I bought this mp3 player for almost nothing” [222].

Further, users can always edit the options and criteria names, delete unwanted options or
criteria, or manually select and collect any text as either an option or a criterion using the popup
menu (Figure 4.3) as a backup.

2https://medium.com/@AtlasSystems/tensorflow-vs-keras-vs-pytorch-which-framework-is-the-best-
f92f95e11502
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Implicit
Behavioral
Signal

Selected References in
Prior Research

Descriptions Strength of
indication of
user
attention

Score FunctionW

Copying
content

Developers frequently copy
sample code from the web to
use in their own
code [46, 116, 117]

Triggers when the user copies some text from
a content block b. This typically happens
when a developer copies sample code from
web pages to try out in their own code.

Strongest 40 for each triggering

Text high-
lighting

People tend to highlight text
while reading to help focus
their attention [231]

Triggers each time when some text in a
content block b gets selected. Triggerings
where the selected text is shorter than 5
characters are disqualified.

Strong 20 for each triggering

Clicking Clicking on content, such as
widgets and links, is
considered to be a decent
behavioral indicator for
perceived interesting
elements on web pages [123]

Triggers when the user clicks on a content
block b. This accounts for situations where
the developer interacts with content on a
page, such as live demo widgets. Clicks that
are part of text highlighting are excluded.

Strong 20 for each triggering

Cursor
hovering

People tend to use the cursor
to guide their attention while
reading web
pages [64, 111, 123, 134, 227].

Triggers each time when the mouse cursor
hovers over a content block b for at least 2
seconds. This accounts for situations where
the developer naturally moves the mouse
cursor onto the content that is currently being
read to guide his or her attention [64,133,227].
However, a cursor hover triggering will be
disqualified when the system detects an
extended period of idling (2 minutes) without
any user actions.

Weak 0.5t , where t is the duration (mea-
sured in seconds) of the cursor’s
stay within the bounds of content
block b. The maximum score is
10. In our pilot testing, users rarely
spend more than 10 seconds read-
ing a text block.

Content
dwelling

The longer some content
stays visible, the more likely
that the user is interested in
it [67, 134].

Triggers each time when a content block b
gets scrolled into and stays in the visible view
port for at least 2 seconds. This indicates that
the developer has at least paid attention to b.
However, a dwell triggering during idling is
disqualified.

Weak 0.2t , where t is the duration (mea-
sured in seconds) of content block
b’s stay in the visible browser view-
port. The maximum score is 4. In
our pilot testing, users rarely stay
at one location for more than 10
seconds.

Table 4.1: Implicit behavioral signals used in Crystalline to track user attention. Column 1 lists the implicit signals;
column 2 provides evidence from selected prior research on the efficacy of the signals; column 3 describes how
the signals are used in Crystalline; column 4 indicates the relative strength of a signal in terms of predicting user
attention; column 5 details the scoring function used to translate signal triggerings into numeric scores based on the
relative signal strengths. The scoring functions were empirically determined through iterative pilot testing.

4.3.2.2 Organizing and prioritizing information

Not all options or criteria are equally useful to a particular developer. Prior work has suggested
that a programming decision usually comes down to how well each option matches the devel-
oper’s goals and criteria that he or she deemed important [100, 161, 163, 178, 213, 217, 224, 235].
In this work, we explore using the amount of attention that one pays to a particular criterion to
approximate its perceived value or importance. To operationalize this, for each web page that a
developer visits, Crystalline processes all the content blocks (HTML block-level elements, such
as <p>, <li>, <pre>, and <div>, etc.) to detect what options and criteria are associated with each
block. Specifically, it prioritizes verbatim mentioning of options and criteria within a block, then
possible options and criteria identified from section headers above the block, then web page titles.
If no options are detected, the page title is used as a placeholder.

Next, Crystalline tracks each triggering of five implicit behavioral signals (copying content,
text highlighting, clicking, cursor hovering, and content dwelling) listed in Table 4.1 on any con-
tent block and translates it into a numeric score (using column 5). The final attention score Ac
representing the amount of attention that a user pays to a particular criterion c is then calculated
using equation (4.1):
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Figure 4.3: Using the selection popup menu to manually collect options and criteria.

Ac = ∑
t∈T

I(t,c)×W (t) (4.1)

where T is the set of all implicit signal triggerings; t is a particular triggering; I(t,c) returns 1 if t
was triggered on a content block that is associated with the criterion c, and returns 0 otherwise;
andW (t) is the corresponding scoring function found in the last column in Table 4.1. The scoring
functions were empirically determined through iterative pilot testing.

To accommodate various behavioral patterns exhibited by different users, we iteratively re-
cruited four batches of participants with diverse backgrounds and job responsibilities both within
our lab and externally. We followed a diary study approach [225] by monitoring their online
searching and browsing behavior related to programming through a custom chrome extension
that logs triggerings of the above behavior signals and ranks the importance of the associated
content blocks accordingly (the initial score functions were determined through our heuristics).
At the end of each sensemaking episode, we prompted them to review howwell the system did in
inferring what they thought was important, and tuned the score function heuristics accordingly
(favoring recall over precision). We leave more advanced and adaptive scoring models for future
work to investigate.

By default, the system shows the top 15 criteria ranked by decreasing attention scores in both
the list and the table view. Users can use the “See More” and “See Less” buttons to adjust how
many criteria that theywould like to see at the same time (Figure 4.1-g). As the user browsesmore
content and spreads his or her attention on different content blocks, the order of these criteria
changes accordingly in real-time, which provides the user with an ambient awareness of what
the system thinks are important. To provide users with the flexibility to override the system’s
ranking, they can right-click on a criterion and use the “pin this criterion” feature to pin it at the
top (Figure 4.1-i). They can additionally specify their own order of preferences by dragging and
dropping to reorder the criteria in the table view, which will automatically pin a criterion if it
is not already pinned. Each time an implicit behavioral signal triggering is detected, Crystalline
also collects the target content block as an evidence snippet, which is presented with its original
styling [177] in the detail views and the comparison table view as mentioned above.

4.3.2.3 Managing connections and relationships.

One way for Crystalline to actively manage the relationships among the collected information
is to automatically merge similar criteria together into criteria groups (indicated by a “multiple
items” icon at the end, see Figure 4.1-e). To achieve this, we leverage recent advances in trans-
former machine learning models such as Universal Sentence Encoder [56] and BERT [76] that
can encode textual content into semantically meaningful vector representations called embed-
dings [101], i.e., two or more semantically close pieces of content will also be close in the embed-
ding vector space (measured by a distance metric, e.g., the cosine similarity distance between vec-

29



CHAPTER 4. CRYSTALLINE: AUTOMATING INFORMATION COLLECTION AND ORGANIZATION

tors [253]). Crystalline computes an embedding for every criterion as the average of its own em-
bedding and its corresponding evidence snippet, and automatically merges criteria that are within
a specified semantic distance threshold to each other into a group. For example, as shown in Fig-
ure 4.2-a, the system automatically merges “Right to Left” (taken from the option “Splide”) and
“RTL” (taken from the option “Swiper”) together since they are semantically similar. The distance
threshold was determined empirically through iterative pilot testing. This has the benefit of re-
ducing clutter while helping users make connections among the information that they have seen,
which is reported by prior work as one of the difficult steps during sensemaking and schematiza-
tion [90, 220, 234]. In case the system fails to automatically group similar criteria together, users
can use drag and drop to manually make the grouping. Similarly, users can easily split a criteria
group by right-clicking on the group and hitting the “split this criteria group” menu item.

In situations where a user reads and investigates some criterion at one location, Crystalline
will also actively look for evidence for the same or similar criteria from other pages that the user
has visited (including the current page) but has not (yet) paid attention to according to the implicit
signals. Crystalline will remind the user of the existence of this additional evidence through a
red notification dot at the top right of a criterion (Figure 4.1-f) as well as in the detailed views
(Figure 4.2-d). This then serves as an additional way for the system to help users uncover and
manage unseen relationships among the information space, as well as a springboard for users to
jump directly to the “overlooked” information for further investigation.

4.3.3 Implementation Notes
To produce the content embeddings, we used bert-as-a-service [76] and the uncased_L-12_-
H-768_A-12 pre-trained BERT model to implement a REST API that the extension can query
on-demand. The embedding calculations are known to incur significant computational costs and
delays. Therefore, to ensure a smooth user experience, they are better suited to run on a remote
server with the necessary resources rather than locally in an end-user’s browser.

Unlike other systems [84,218] that help users find more information from new sources, Crys-
talline only collects information from the web pages that a user has explicitly visited. This is an
intentional design choice we make in the current implementation: the major role of Crystalline is
to remove the burden for users to actively keep track of relevant information that they have per-
sonally seen and investigated so that it is easier for them to revisit and recall. We leave the design
space of automating the discovery of new relevant information for future research to explore.

4.4 Evaluation
We conducted an initial lab study to evaluate the usability of the Crystalline system in helping
developers collect and organize information.

4.4.1 Participants
We recruited 12 participants (7 male, 5 female) aged 22-35 (µ = 27.6, σ = 3.7) years old through
emails and social media. The participants were required to be 18 or older, fluent in English, and
experienced in programming. Participants had on average 6.9 years of programming experience,
with half of them currently working or having worked as a professional developer and the rest
having programming experience in universities.
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4.4.2 Procedure
The study was a within-subjects design, where participants were presented with two tasks and
were asked to complete one of them using Unakite (baseline condition) and the other using Crys-
talline (experimental condition), in a counterbalanced order. For each task, participants were
presented a programming decision-making problem, a set of four web pages, some necessary
background of the problem, and a list of three options available to solve the problem that they
were required to investigate. The provided web pages were either documentation pages of spe-
cific options or comprehensive review articles reviewing several options together. Participants
were instructed to read through the provided web pages, and use either Unakite or Crystalline
to collect and organize information into a comparison table containing all the given options and
at least 8 different criteria in the order of their perceived importance. We imposed a 20-minute
limit per task to keep participants from getting caught up in one of the tasks. However, they
were instructed to inform the researcher when they have collected 8 criteria as well as the asso-
ciated evidence. If they wished to continue beyond this checkpoint, they were allowed to, until
they felt like they could make no further progress. Specifically, the two tasks were to use the
corresponding system in each condition to build a comparison table of:

• (A) Choosing a JavaScript carousel library to build a photo sharing web application. The available options
were: Splide.js [20], Slick [19], and Swiper [21].

• (B) Choosing a front-end framework to implement a basic personal portfolio website. The available options
were: React.js [86], Angular [104], and Vue.js [22].

We chose Unakite over other commercially available tools such as Google Docs as the base-
line condition because: 1) it can be easily used to capture richer contexts such as formatted text
(example code), images, and links; 2) similar to Crystalline, it also provides a sidebar that allows
participants to view and organize the collected information directly rather than switching context
over to another browser tab or application to paste in and structure information; and 3) Unakite
was shown to be easy to learn and use in prior research and incurs significantly less overhead
cost than using Google Docs [177].

In addition, rather than letting participants search for their own pages to research, we pro-
vided them with the predefined set of pages to ensure a fair comparison of the results, and since
helping to find relevant web pages is not a goal of Crystalline. Requiring participants to only
read the predefined pages (each contains on average 7 screenfuls of content) also helps ensure
that the two tasks are of roughly equal difficulty in terms of reading and cognitive processing
effort. Furthermore, to ensure realism and participant engagement, the tasks were selected based
on actual questions asked and discussed on programming forums and websites. We specifically
simplified the requirements and background of task B to match that of task A, since otherwise,
choosing a JavaScript framework (e.g., to build interactive industry-level web applications) would
arguably be more substantial and involve deeper and much more careful comparisons and team
discussions that are beyond the scope of this lab study. In fact, as shown in section 4.5.1 there
was no significant difference by task.

Each study session started by obtaining consent and having participants fill out a demographic
survey. Participants were then given a 10-minute tutorial showcasing the various features of
Unakite and Crystalline and a 10-minute practice session on both systems before starting. At the
end of the study, the researcher conducted a survey and an interview eliciting subjective feedback
on the Unakite and Crystalline experience. Each study session took approximately 60 minutes,
using a designated MacBook Pro computer with Chrome, Unakite and Crystalline installed. All
participants were compensated $15 for their time.
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Manually
select
information
and capture

Rename
an option
/ criteria

Delete an
option /
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Manually put
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the table

Remove a
snippet
from the
table

Merge
criteria
into groups

Split
criteria
groups

Pin or
reorder
criteria

Overall

Task A 27.0 (6.42) 1.67 (1.97) 0.67 (1.03) 16.5 (5.43) 0.50 (0.84) N/A N/A 6.00 (2.19) 52.3 (13.7)
Task B 26.2 (5.56) 1.83 (1.60) 1.50 (1.38) 14.5 (5.28) 0.33 (0.82) N/A N/A 6.00 (1.79) 50.3 (14.3)

Average 26.6 (5.74) 1.75 (1.71) 1.08 (1.24) 15.5 (5.21) 0.42 (0.79) N/A N/A 6.00 (1.91) 51.3 (13.4)

(a) Unakite condition

Manually
select
information
and capture

Rename
an option
/ criteria

Delete an
option /
criteria

Manually put
information
snippets into
the table

Remove a
snippet
from the
table

Merge
criteria
into groups

Split
criteria
groups

Pin or
reorder
criteria

Overall

Task A 0.83 (0.75) 2.17 (1.17) 0.50 (0.84) 0.17 (0.41) 0.33 (0.52) 2.33 (0.82) 0.83 (0.75) 5.33 (1.97) 12.5 (3.02)
Task B 1.00 (1.26) 1.67 (0.82) 0.50 (0.55) 0.33 (0.52) 0.33 (0.52) 1.83 (0.75) 0.67 (0.82) 5.50 (2.74) 11.8 (3.31)

Average 0.92 (1.00) 1.92 (1.00) 0.50 (0.67) 0.25 (0.45) 0.33 (0.49) 2.08 (0.79) 0.75 (0.75) 5.42 (2.27) 12.2 (3.04)

(b) Crystalline condition
Table 4.2: Statistics for the average number of interactions performed by users to perform the tasks in the user
study. Standard deviations are included in the parentheses.

4.5 Results

4.5.1 Quantitative Results
All participants were able to complete all of the tasks in both conditions, and nobody went over
the pre-imposed time limit. Figure 4.1, together with Figure 4.2, shows an example table built by
one of the participants in the study for task A.

To examine how Crystalline performs compared to the baseline Unakite condition, we mea-
sured the time it took for participants to finish each task. A two-way repeated measures ANOVA
was conducted to examine the within-subject effects of condition (Crystalline vs. Unakite) and
task (A vs. B) on task completion time. There was a statistically significant effect of condi-
tion (F(1,20) = 8.06, p = 0.01) such that participants completed tasks significantly faster (21.6%
faster) with Crystalline (Mean = 611.8 seconds, SD = 144.6 seconds) than in the Unakite condition
(Mean = 780.3 seconds, SD = 137.6 seconds). There was no significant effect of task (F(1,20) =
0.11, p = 0.74), indicating the two tasks were indeed of roughly equal difficulty. These results
suggest Crystalline helped participants build up comparison tables faster overall, even the ma-
jority of their time was necessarily spent reading through the material in both conditions.

To account for this reading time, we also compared the overhead cost (see section 3.4.1.2) of
using both tools to collect and organize information. For the Crystalline condition, we calculated
the overhead cost as the portion of the time participants spent on directly interacting with Crys-
talline (scrolling through the list and table view to examine the evidence collected so far, splitting
and merging criteria, pinning important criteria, manually collecting information, etc.) out of the
total time they used for a task (vs. reading and comprehending the web pages). Similarly, in the
Unakite condition, the overhead cost was calculated as the percent of time participants spent on
directly using Unakite features (selecting and collecting snippets, drag and dropping them into
the comparison table, etc.), in the same way as was done to compare Unakite to Google Docs.

A two-way repeated measures ANOVA was conducted to examine the within-subject effects
of condition (Crystalline vs. Unakite) and task (A vs. B) on overhead cost. There was a statis-
tically significant effect of condition (F(1,20) = 77.5, p < 0.001) such that the overhead cost
was significantly lower (almost 60% lower) in the Crystalline condition (Mean = 11.6%, SD = 0.04)

32



4.5. RESULTS

than in the Unakite condition (Mean = 28.4%, SD = 0.07). Again, there was no significant effect
of task (F(1,20) = 0.53, p = 0.48)). Thus, using Crystalline resulted in reduced overhead costs
of collecting and organizing information.

To gain deeper insights into why the overhead cost was significantly lower in the Crystalline
condition, we tallied the number of interactions performed in each task while collecting and or-
ganizing information to build the comparison tables (Table 4.2). Here, we notice that the majority
of interactions in the Unakite condition are to manually collect information snippets (on average
26.6 times) and place them into the comparison table (on average 15.5 times). In contrast, in the
Crystalline condition, the majority of interactions are to merge criteria into groups (on average
2.08 times) and pin or reorder the criteria in the table (on average 5.42 times). This suggests that,
to some extent, Crystalline has transformed the previously active capturing and organizing work
into passive monitoring and error-fixing, which explains the lower overhead cost.

In the survey, participants reported (in 7-point Likert scales) that they thought the interactions
with Crystalline were understandable and clear (Mean = 6.17, SD = 0.39), Crystalline was easy to
learn (Mean = 6.08, SD = 0.79), and they enjoyed Crystalline’s features (Mean = 6.25, SD = 0.45).
In addition, compared to Unakite (Mean = 5.75, SD = 0.45), they thought using Crystalline (Mean
= 6.08, SD = 0.29) would help them solve programming problems more efficiently and effectively,
and would recommend Crystalline (Mean = 6.17, SD = 0.58) over Unakite (Mean = 5.58, SD = 0.51)
to friends and colleagues doing programming work, both differences were statistically significant
under paired t-tests.

4.5.2 Qualitative Observations
4.5.2.1 Usability and usage patterns

Overall, participants appreciated the increased efficiency afforded by various Crystalline features.
Many (9/12) mentioned that the perceived workload to collect and organize what they have in-
vestigated was minimal, saying that “I feel like I got a table for free” (P3), “the fact that I can see
what I’ve paid a lot of attention to automatically bubbles up to the top is quite magical” (P9), and
“It feels as if I was sitting in the passenger seat and not having to do all the steering and maneu-
vering” (P7). Some (3/12) participants also reported having taken advantage of the overlooked
information reminder feature (Figure 4.2-d) to guide their research. Furthermore, participants
reflected that Crystalline relieves them of the burden of trying to anticipate the value of a partic-
ular piece of information before collecting it since “the important bits will eventually be at or near
the top, hopefully” (P12), and they could “focus on reading the page itself and not context switch to
bookkeeping mode again and again” (P5).

However, some did voice concerns about the system’s ability at the beginning of the tasks,
arguing that they were “skeptical if it will actually collect the right things” (P1), and reported that
they would “skim through the list view and the table view quite frequently at the beginning” (P7).
However, as they progressed through the tasks, their confidence in Crystalline increased, and
they only occasionally checked the sidebar. We observed that three of the 12 participants ended
up not examining and editing the system’s output until they felt like they had finished reading
and processing all the given pages, and they made minimal edits to the results.
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4.5.2.2 Working with machine suggestions

Participants generally thought that the benefits of automating the collection and organization
process outweighed the costs of dealing with occasional unhelpful machine suggestions, such as
incorrectly merging criteria together or prioritizing unimportant criteria at the top of the list. For
example, P7 reflected, “it feels like a mind reader. I know it’s not perfect, but I also don’t expect it
to be, and would actually prefer occasionally peeking into what it’s been doing and fixing whatever
that’s not correct than grabbing everything by myself all the time.”

Some did raise concerns about the ordering of criteria getting changed too frequently (“they
[the criteria] were jumping around”, P7) at the beginning. This is likely due to the fact that users
were skimming through a web page without paying particular attention to anything at the begin-
ning, causing their attention scores to be relatively indistinguishable. For future iterations of the
system, we could experiment with less frequent UI update intervals under these circumstances
so it would cause less distraction.

4.5.3 Evaluation Discussion
Similar to what was reported in prior work [223], since our participants were not explicitly told
how the system worked to automatically collect and rank information, they had to form their
own mental models and hypotheses about how the system works and how they could affect it
with their behavior. For example, P8 noticed that “it looks like if I spend a little bit more time on a
particular place on a page, the corresponding criterion would get picked up and bumped up quickly;
and if I click on that part a bunch of times, which happens to be what I typically would do when I try
to focus my attention on something now that I’m thinking about it, it’s [the corresponding criterion]
going to go up even faster.” This suggests that our implicit signals were working, and further, that
with experience users might adapt to explicitly steer the system towards their goal of collecting
and prioritizing information, resulting in, to some extent, a mixed-initiative collection approach
that still would require much less effort than the baseline methods. Future research could explore
the costs and benefits of a wide variety of interactions and signals that lie on the spectrum be-
tween implicit behavioral signals to full manual direct manipulations, and any differences caused
by directly instructing users about the implicit signals being used.

Though the current version of Crystalline mainly focuses on reducing the cost for developers
to collect and organize information, which was exactly what we tested in the lab study, we were
also interested in making sure that the quality of the comparison tables built using Crystalline
does not degrade as seen in other automation scenarios [108,251]. Since there is not a gold stan-
dard comparison table, we evaluated the correctness of Crystalline’s automatic approaches by
how much editing participants had to do in order to fix Crystalline’s mistakes and make sure
that all the content in the table was eventually filled out and ranked correctly according to their
understanding as per the study protocol. As shown in Table 4.2(b), participants only had to per-
form on average 12.2 edits to the automatically generated comparison tables, compared to the
51.3 actions that they had to manually perform in the baseline Unakite condition (the difference
is statistically significant, p < 0.01). Among these, edits that are related to collecting informa-
tion, such as manually selecting information and capture (0.92 times), renaming (1.92 times), and
deleting information (0.50 times) were minimal, suggesting that our combination of NLP and be-
havioral signal heuristics was working effectively to collect information that the users thought
was important. However, participants pinned or reordered the criteria that were automatically
ranked by Crystalline on average 5.42 times (SD = 2.27 times). One possible explanation is that
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the universal scoring functions (in Table 4.1) did not necessarily apply to every single partici-
pant, suggesting the need for a more sophisticated and personalized scoring mechanism in future
iterations of Crystalline and systems that leverage signals from users’ natural browsing behavior.

In addition, we asked and coded their opinions about using these tables as if they were the
subsequent developers trying to understand the design rationale. In general, participants were
excited about using comparison tables automatically built by Crystalline. For example, P10 high-
lighted scenarios where Crystalline would be useful for his own purposes, saying that “it’s sort
of like a never-erased whiteboard that would most likely help me remember what I looked at three
months ago.” In addition, some reflected that compared to having no clue of why a decision was
made in a particular way in the first place, they would appreciate at least having access to a Crys-
talline table even if it was not actively monitored and maintained during the initial developer’s
sensemaking process. For example, P4 said: “I think being able to read something like this [Crys-
talline table] is going to make a big difference when you’re banging your head against the wall trying
to understand why this particularly old API was chosen, I mean, especially when the guy who wrote
the code was long gone, I could at least ‘read a transcription of his mind’ in some sense.” Here, we see
preliminary evidence that our approach of automatically collecting and organizing information
on behalf of developers is useful and valuable. We leave the formal evaluation of the quality of
fully automatically built comparison tables with possibly more advanced versions of Crystalline
for future work.

4.6 Discussion and Limitations
Currently, Crystalline works best on a limited set of web pages in the programming domain,
including documentation pages that are dedicated to a particular library or a set of APIs, as well
as review articles or question answering pages that discuss and compare several options together.
We chose to optimize for these types of web pages in the current prototype as they are reported
in prior work [131,177] as well as our formative discussions with developers as some of the most
frequently consulted programming resources when it comes to making decisions. However, the
performance reported on the web pages used in the study is not necessarily representative of how
Crystalline would operate even on web pages of these types for users in general. In addition,
Crystalline currently relies heavily on the overall structure of the web pages being standard,
meaning that a page uses HTML tags appropriately according to their semantics (e.g., enclosing
headers and list items in <h> and <li> tags rather than wrapping everything with <div> tags)
and that there is a strong semantic coherence between a section header and its corresponding
content. Though this is sufficient to demonstrate the idea of automatic collecting and organization
and the benefits they offer, future research is needed to make Crystalline-style tools work on a
more diverse set of web pages, as well as how to be clear upfront about its limitations in parsing
web pages that do not follow appropriate web standards.

In addition, our lab study has several limitations. Given the short amount of training and
practice time participants had, some might not have been able to fully grasp the various features
of Crystalline, or they might have been confused about what Unakite (the baseline system) has to
offer. The study tasks might not be what participants typically encounter in their daily work, de-
pending on whether they are in a position to make decisions, and thus they may not be equipped
with the necessary motivation or context that they would otherwise have in real life. We mit-
igate these risks in the study setup by: 1) having participants perform a practice task for each
condition simulating what they would have to do in the real tasks; 2) choosing the study tasks
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based on actual questions that are discussed by developers on Stack Overflow and other popular
programming community forums; and 3) providing participants with sufficient background in-
formation and context to help them get prepared. In fact, 7 out of 12 participants reported that
the tasks were indeed similar to what they would deal with in their daily work. One further ad-
dress these limitations in the future by having developers use Crystalline on their own work and
personal projects, which would provide them with sufficient motivation as well as experience
with Crystalline enriched over time.

Furthermore, the overhead cost measurement in the study could be conservative, as we did
not account for the time participants spent simply glancing or looking at the sidebars without
any explicit interactions with it. However, from our observations during the study, participants
rarely spent any extended time doing this. Nevertheless, we would like to take advantage of more
advanced tools such as eye tracking [42, 210, 211, 227] in the future to more accurately account
for the proportion of time when a participant’s gaze is fixated on the user interface of the tools
rather than on actual web content.

Last but not least, automation afforded by systems like Crystalline enable people to focus
their attention on reading and comprehending the web pages rather than splitting attention with
having to collect and organize the information at the same time. However, prior work in learning
science, such as Bransford et al. [69], found that people who personally performed the actions
of collecting, categorizing, and organizing information were more likely to be able to recall it
correctly and in detail, and exhibited increased confidence in the final outcome. This raises an
interesting tension and trade-off between full-on automation and direct manipulation — future
research would be required to examine the long term effect on people’s learning outcome as well
as confidence in their decisions using systems like Crystalline, and determine the appropriate
levels and circumstances when automatic information bookkeeping should be applied.
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Chapter 5

Wigglite: Lightweight Gestures for
Collection and Triage

This chapter was adapted from my published paper:

Michael Xieyang Liu, Andrew Kuznetsov, Yongsung Kim, Joseph Chee Chang, Aniket Kittur, and
Brad A. Myers. 2022. “Wigglite: Low-cost Information Collection and Triage.” In Proceedings of the
35nd Annual ACM Symposium on User Interface Software and Technology (UIST ’22). Association for
Computing Machinery, New York, NY, USA, 67–80.
Video: https://youtu.be/_MH81Zuyj64

5.1 Overview
Consumers conducting comparison shopping, researchers making sense of competitive space,
and developers looking for code snippets online all face the challenge of capturing the information
they find for later use without interrupting their current flow. In addition, during many learning
and exploration tasks, people need to externalize their mental context, such as estimating how
urgent a topic is to follow up on, or rating a piece of evidence as a “pro” or “con,” which helps
scaffold subsequent deeper exploration. However, current approaches incur a high cost, often
requiring users to select, copy, context switch, paste, and annotate information in a separate
document without offering specific affordances that capture their mental context.

To summarize, we frame a fundamental sensemaking challenge for people trying to research
and make decisions online as the high friction involved in capturing: (1) the content that they
want to keep track of, which can range from aword, a phrase, an image, to a paragraph ormultiple
blocks of mixed multimedia content, (2) which option or topic that content corresponds to and
its perceived priority for further investigation (which is called “triaging”), and (3) whether the
evidence they find about that option or topic is positive or negative regarding its suitability for
the user’s goals (which is called “valence”) [177].

Our vision in this chapter is to create a technique that reduces the friction for the transfer
of a user’s internal mental judgements while they are processing information into an external
system that will capture those judgements and scaffold sensemaking and exploration. While it
is a challenge for the cost of this transfer to be zero, we aim to reduce the overhead significantly
by exploring a new interaction technique called “wiggling,” which can be used to fluidly collect,
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Figure 5.1: We introduce the “wiggling” technique: rapid back-and-forth movements of a mouse pointer on desktop
(a) or a finger on mobile devices (d) that do not require any clicking to perform, yet are sufficiently accurate to select
the desired content, while at the same time supporting an optional and natural encoding of valence rating (positive
to negative) (on desktop: b1-2, on mobile: e1-2) or classification of priority (to facilitate triage) (c1-4) by ending the
wiggle with a swipe in different directions.

organize, and rate information during early sensemaking stages with a single gesture. Wiggling
involves rapid back-and-forthmovements of a pointer or up-and-down scrolling on a smartphone,
which can indicate the information to be collected and its valence, using a single, light-weight
gesture that does not interfere with other interactions that are already available. Through im-
plementation and user evaluation, we found that wiggling helped participants accurately collect
information and encode their mental context with a 58% reduction in operational cost while being
24% faster compared to a common baseline.

5.2 Related Work

5.2.1 Recognizing and Using Gestures
The wiggle gesture we use in Wigglite (as shown in Figure 5.1) has a similar form to a scratch-
out gesture in some previous systems used for undo [280], edit [232], or delete. Wiggling has
also been used by some windowmanagers, for example, MicrosoftWindows 7 in 2009 introduced
“Aero Shake” [265] where grabbing the title bar with the mouse and shaking the window left and
right minimizes all other windows, or restores them. However, these gestures all require that the
mouse button first be depressed, while our approach, on the contrary, is specifically designed to
workwhenwith none of themouse buttons are depressed. In addition, macOS has an accessibility
feature that supports shaking the mouse to make the size of the pointer much larger to help locate
the pointer [259]. Importantly, our testing shows that those features do not interfere with our
browser-based implementation of wiggle-based gestures.

Over the years, many complex gesture recognizers have been developed, such as the Rubine
recognizer [232], which extracts multiple features from a trajectory and uses a linear classifier for
recognition. However, these parametric recognizers are difficult to control with respect to the
variances in gestures to be supported. Another approach is template-based gesture recognition,
such as the $1 recognizer [281] and the Protractor recognizer [172], which compare new trajec-
tories to the pre-defined gesture templates, and is more lightweight without sacrificing too much

38



5.3. BACKGROUND AND DESIGN GOALS

bb

cc

ee

ff

Topics viewgg Holding tankhh

aa

dd

Figure 5.2: Wigglite’s UI built on top of SKeema. On the left is the topics view (g) where users can create a topic (a)
as well as change its perceived priority (c). On the right is the holding tank (h) that holds the collected information,
in which users can filter out information with a lower rating using the slider (b). As a result, clips with rating scores
lower than the set threshold would be automatically grouped together at the end and grayed out (d), and users can
easily archive or put them in trash by clicking a button (e). In addition, users can manually adjust the valence rating
of an information clip (f).

accuracy. However, these recognizers can be both time and resource intensive, especially on mo-
bile devices where the computing power and resources are usually limited. In our work, we built
a heuristics-based ad-hoc recognizer (see section 5.4), allowing the system to perform real-time
eager recognition [233] without impacting the performance of other UI activities on both desktop
and mobile devices. In addition, building on prior evidence that people can accurately perform
swipes to as many as eight different directions [52, 156], we support ending the wiggle gesture
with a directional swipe to further classify the collected information or encode people’s mental
context in situ.

5.3 Background and Design Goals
To ground our research, we build on an existing information and task management system called
SKeema. First, we briefly describe SKeema and its features related to the context of this work, then
discuss the design goals and processes for the wiggling gesture for the new Wigglite system.

5.3.1 The SKeema system
SKeema is a Chrome browser extension designed to support people’s need to collect and orga-
nize information and manage their tabs during online sensemaking. Different from general web
clippers that typically only support saving entire pages of web content into an individual note
within a notebook [84], SKeema enables people to save an arbitrary amount of web content as
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Figure 5.3: Two clipping mechanisms that SKeema supports: clipping text (left) and clipping screenshot (right).

information clips (Figure 5.5-c) into a holding tank (Figure 5.2-h), and later organize them into
topics in the topics view (Figure 5.2-g). For clipping, SKeema offers two methods:

• Clipping text: Users can select arbitrary content using the cursor and click the clipping button that pops up
to collect the selected texts (see the left part of Figure 5.3).

• Clipping screenshot: Users can use the screenshot feature to drag out a bounding box to save the desired
content (see the right part of Figure 5.3).

To help users express whether a piece of evidence that they collected is positive or negative
with regard to their own goal, SKeema allows users to add a valence rating from -10 to +10, with
negative values indicating a “con” and denoted by a “thumbs-down” emoji and positive values
indicating a “pro” and denoted by a “thumbs-up” emoji (see Figure 5.5-c1).

SKeema allows users to organize information into thematically related topics in the topics
view (Figure 5.2-g). To achieve that, users need to manually create a topic (Figure 5.2-a), enter a
name, and drag the desired information cards from the holding tank and drop it into the topic.
Users can also set priority to a topic to indicate its perceived utility and how much they want
to follow up on it, which defaults to be “Normal”, but can also be set to “Low”, “High”, or “Very
high” (Figure 5.2-c).

Although SKeema has the support for collecting finer-grain content (which research has
shown to be the unit of information that people usually think in and work with during sensemak-
ing [188, 241]), there is still a high cost in specifying the collection boundary and adding ratings
and priorities to the collected information and topics (which users would have to switch to the
SKeema tab to do). In addition, clipping text in SKeema loses the text’s original CSS styling, which
might be helpful for quicker recognition later on [177], and SKeema does not gracefully support
collecting consecutive blocks of mixed content (e.g., consumer review text of a camera followed
up some sample photos, such as shown in Figure 5.3-b).

5.3.2 Design Goals for Low-cost Information Capturing and Triaging
Guided by prior work andwell as the limitations of SKeema discussed above, we set out to provide
an interaction that could simultaneously reduce the cognitive and physical costs of capturing
information while providing natural extensions to easily and optionally encode aspects of users’
mental context during sensemaking. We hypothesize that such an effective interaction should
have the following characteristics:
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(1) Accuracy: It needs to be accurate and precise enough to lock onto the content the users
intend to collect.

(2) Efficiency: It should be quick and low-effort to perform, and minimize interruptions to the
main activities that users are performing, such as learning and active reading.

(3) Expressiveness: It should be extendable to provide natural and intuitive affordances for
users to express aspects of their mental context at the moment. In the scope of this work, we
would like to have wiggling support encoding valence ratings as well as topic priorities.

(4) Integration: It should be a complement to and not interfere with the existing interactions
that users already use, such as using the pointer to select text and pictures or click on links.

Below, we present a brief overview of the iterative design exploration leading to the current
wiggle-based interactions.

5.3.3 Iterative Design Exploration
To begin our exploration, we took a desktop-first approach and brainstormed various interactions
that would address these four design goals. To ground our explorations, we also prototyped
these candidate interactions using JavaScript in a browser, which is where a large portion of
the reading and collecting happens [58, 114]. Like previous approaches, collecting the desired
content, including text and/or images, can be broken down into two main phases: (a) identifying
the desired target and (b) triggering the collection.

One of the interactions we first explored was simply clicking on the desired content (or in
the gutter to the left or right) to capture it into the system, similar to existing interactions sup-
ported by some text editors such as Microsoft Word. Although straightforward, this interferes
with existing selection methods, and would require users to first enter a “grabber” mode, pos-
sibly through a special hotkey combination, which violates both design goals (2) and (4). Next,
we experimented with hovering the pointer over the target content and keeping it still for a pe-
riod of time in order to trigger a collection. This has the benefit of not interfering with existing
interaction methods as there is no clicking required, satisfying goal (4). However, research has
shown that when heavily engaged in active reading and sensemaking tasks, people often need
to select and save information frequently within short time intervals [58, 275], and waiting for a
noticeable amount of time will add an inherent cost to every collection operation a user wants to
perform and therefore is likely to interrupt the user’s main activity, violating design goal (2).

Next, we experimented with using non-click gestures (satisfying goal (4)) performed on the
desired target to trigger the selection, since gestures are considered intuitive to perform and
widely used in both commercial and academic systems [157,162,166,233,268]. One of the promis-
ing ideas was to use the mouse pointer to sketch out a certain shape over the desired target to
trigger a collection. In addition, by varying the shape, it could theoretically support encoding
different aspects of users’ mental model, such as sketching a “+” for marking it as a “pro” and “-”
as a “con” [281], supporting design goal (3). However, similar to using keyboard shortcuts, it is
hard for users to learn and memorize the different shapes without special affordances [162, 290].
Furthermore, making sure one sketches out the correct gesture may require non-trivial physical
as well as cognitive demand, violating goal (2), and even so, these shapes can have a high false
recognition rate, violating goal (1).

We then experimented with gestures that do not require special training or practice in or-
der to perform accurately. One that worked particularly well is wiggling the mouse pointer, i.e.,
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Figure 5.4: Using wiggling to collect information as well as encode priorities and valence ratings. Specifically, as
shown in (c), users can wiggle (c2) over the desired content (c1) to collect it into the information holding tank (Figure
5.5-c). A popup dialog will be presented near the just collected content to allow users to optionally add a valence
rating (c3), pick a topic that the content should go into (e2), add notes (c4), as well as undo the collection (e1). In
addition to regular collection, users can also end the wiggle with a swipe right to encode a positive rating (d) or left
to encode a negative rating (e), which can also be changed in the popup dialog (d1). Furthermore, by ending a wiggle
with a swipe up (a) or down (b), users can create a new topic with different priorities (b1), and can change the title
of the topic directly in the popup dialog (a1).

making small ballistic back-and-forth movements, on top of the desired collection target (Figure
5.1-a). Here, the choice of a target could be determined from the average or starting location of
the mouse pointer during the gesture, and the user continues to perform the same back-and-forth
motion until reaching a certain threshold to trigger the collection. Indeed, prior work has sug-
gested that people naturally use the mouse pointer to guide their attention while reading [124], or
even unconsciously have the pointer follow their eye gaze [134], so the pointer could be readily
available to initiate a wiggle in place.

This has some additional benefits, such as it seemed natural and intuitive like scratching off
something [232, 280], it can be activated without clicking, which can be both cognitively and
physically costly [148], and is robust against false positives since only a very specific motion
pattern could trigger a collection. Furthermore, it can be chained with optional operations such
as swiping in different directions that not only are consistent with the wiggling gesture itself but
also intuitively map to users’ mental context (such as swiping left/right for negative/positive and
up/down for various levels of importance, and even leveraging the amount of distance traveled
of a swipe to encode a continuous value).

Since there is no mouse pointer on mobile devices such as smartphones, and using fingers to
move left and right in browsers triggers page navigation back and forth, whereas up and down is
used for scrolling, we decided to take advantage of these small up-and-down scroll events, since
they are not currently in use by any existing interactions. Therefore the wiggling counterpart on
mobile devices became using the finger to quickly scroll up-and-down while the finger is over
the desired collection target (Figure 5.1-d).
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5.4 The Wigglite System

5.4.1 Wiggle-based Gestures
For desktop computers with a traditional mouse, trackpad or trackball input device, the wiggle
interaction consists of the following stages, as illustrated in Figure 5.1-a,-b,-c:

(1) Acquiring the collection target: To initiate, users move their mouse pointer onto the tar-
get content that they would like to collect (Figure 5.1-a0) and initiate the wiggling movement
specified in the steps below. Wigglite uses an always-on wiggle gesture recognizer to auto-
matically detect the start of a wiggling gesture. This avoids the requirement of an explicit
signal like a keyboard key or mouse down event, which might conflict with other actions,
and has the benefit of combining activating and performing the gesture together into a single
step, therefore reducing the starting cost of using the interaction technique.

(2) Wiggle: To collect the target content, users simply move the mouse pointer left and right
approximately inside the target content. To indicate that the system is looking to detect the
wiggling gesture, it will display a small “tail” (e.g., Figure 5.4-c2) that follows the pointer on
the screen, and replaces the regular pointer with a special one containing the SKeema icon.
Wigglite also adds a dotted blue border to the target content to provide feedback about what
content will be collected, and the blue color grows in shade as users perform more lateral
mouse movements (Figure 5.1-a1–4). This is analogous to half-pressing the shutter button to
engage the auto-focus system to lock onto a subject when taking photos with a camera. To
assist with collecting fine grain targets, ranging from a word to a block (e.g., a paragraph,
an image), Wigglite allows users to vary the average size of their wiggling to indicate the
target that they would like to collect: if the average size of the last five lateral movements of
a pointer is less than 65 pixels (a threshold empirically tuned that worked well in our pilot
testing and user study, but implemented as a customizable parameter that individuals can
tune based on their situations), Wigglite will select the word that is covered at the center of
the wiggling paths; while larger lateral movements will select a block-level content (details
discussed in section 5.4.3.2). In addition, users can abort the collection process by simply
stopping wiggling the mouse pointer before there are sufficient back-and-forth movements.

(3) Collection: As soon as users make at least five back and forth motions (optimized for the
amount of physical effort required and the number of false positive detection through pilot
testing, but is also implemented as a parameter that can be customized by individuals in prac-
tice, details discussed in section 5.4.3.1), the system will commit to the collection, and gives
the target a darker blue background showing that a wiggle has been successfully activated
(as shown in Figure 5.1-a5). If users want to collect multiple blocks of content, they can just
naturally continue to wiggle over other desired content after this activation. Or, they can stop
wiggling. However, if users have selected the wrong target, an undo button appears, which
can be clicked to cancel the collection (Figure 5.4-e1).

(4) Extension: Instead of just stopping the wiggle motion after collection, users can leverage
the last wiggle movement and turn it into a “swipe”, either horizontally to the right or left to
encode a positive or negative valence rating (as shown in Figure 5.1-b1,b2), or vertically down
or up to specify a topic and priority for that topic (as shown in Figure 5.1-c1–4). Feedback for
the extension uses different colors for the background of the target content to provide visual
salience (details discussed in section 5.4.2).

Similarly, on a mobile device with touch screens:
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(1) Acquiring collection target: To initiate, a user’s finger touches the target content that
should be selected.

(2) Wiggle: To collect the target block, the user keeps the finger on the screen and starts making
small up-and-down scrolling movements. Similar to the desktop scenario, the system adds
a dotted blue border to the target content to provide feedback that the wiggling is being de-
tected (Figure 5.1-d0–4). Note that due to the limitations of the large size of the finger with
respect to an individual word [58] as well as the unique use cases of mobile devices (e.g.,
quickly consuming and collecting blocks of information on the go [137, 276]), Wigglite for
mobile only supports selecting block-level content such as paragraphs or images.

(3) Collection: As soon as the user makes at least five up-and-down motions, the system will
commit to the collection by giving the target a darker blue background (Figure 5.1-d5). Now,
the user can stop wiggling and lift the finger from the screen. Similar to the desktop version,
an undo button pops up that lets the user cancel the collection in case of an error. Note that
due to the limited screen real estate that typical mobile devices afford, additional blocks of
content will have to be first scrolled into view for users to then capture them, which would
make the interaction less fluid. Therefore, collecting multiple blocks of content is currently
not supported by Wigglite on mobile.

(4) Extension: Instead of stopping the wiggle motion after collection, users can end the wiggle
with a horizontal swipe to the left or right to achieve similar encoding capabilities described
for the desktop version. After the system detects the wiggle, it turns off other actions un-
til the finger is lifted, so the swipes do not perform their normal actions. (But the normal
swipes, scrolling, and other interactions still work normally when not preceded by a wiggle.)
Currently, since Wigglite already uses the vertical dimension for detecting wiggling move-
ment on a mobile device, and large cross-screen vertical movements are difficult to perform,
especially when holding and interacting with a single hand, we opted not to make a mobile
equivalent of encoding topic priorities.

5.4.2 An Overview of TheWigglite System
Wigglite enables users to collect and triage web content via wiggling. First of all, after a regular
wiggle with no extension (Figure 5.4-c), Wigglite presents a popup dialog (augmenting the origi-
nal SKeema popup) directly near the collected content to indicate success. In addition to SKeema’s
notes field (Figure 5.4-c4), users can attach a valence rating (Figure 5.4-c3) and pick the topic that
this piece of information should be organized in (Figure 5.4-e2), as opposed to post-hoc organi-
zation using drag and drop as required by SKeema. By default, it goes into the last topic the user
picked or the holding tank if none was picked initially. Unlike SKeema where information was
saved in pure text format or an inflexible screenshot with limited resolution, Wigglite leverages
the technique introduced in [177, 179] to preserve and subsequently show the content with its
original CSS styling, including the rich, interactive multimedia objects supported by HTML, like
links and images. This makes the content more understandable and useful, and also helps users
quickly recognize a particular piece of information among many others by its appearance [177].

Of course, a more fluid way to encode user judgements than what was described above is to
leverage the natural extension of the wiggle gesture discussed in the previous section: to encode a
valence rating in addition to collecting a piece of content, users can end a wiggle with a horizontal
“swipe”, either to the right to indicate positive rating (or “pro”, characterized by a green-ish color
that the background of the target content turns into, and a thumbs-up icon, as shown in Figure
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5.4-d), or the left for negative rating (or “con”, characterized by a red-ish color that the background
of the collected block turns into, and a thumbs-down icon, as shown in Figure 5.4-e). Optionally,
users can also turn on real-time visualizations of “how much” they swiped to the left or right to
encode a rating score representing the degree of positivity or negativity, and can adjust that value
in the popup dialog (Figure 5.4-d1) or from the information card (Figure 5.2-f). Under the hood,
Wigglite calculates this score as the horizontal distance the pointer traveled leftward or rightward
from the average wiggle center divided by the available distance the pointer could theoretically
travel until it reaches either edge of the browser window. This score is then scaled to be in the
range of -10 to 10 to match with the existing values provided by SKeema.

Alternatively, to directly create a topic and encode it with a priority from wiggling, users can
either end the wiggle with a swipe up (encoding “high”, characterized by a yellow-ish color that
the background of the target content turns into, as shown in Figure 5.4-a) or down (encoding
“normal”, characterized by a gray-ish color that the background of the target content turns into,
as shown in Figure 5.4-b). Optionally, if the user swipes all the way up or down to the edge of the
browser window, Wigglite will additionally encode two more levels of priorities, “urgent” and
“low”, indicated by a bright orange and a muted gray color (Figure 5.4-b1), which can be adjusted
in the popup dialog (Figure 5.4-b1) as well as in the topics view (Figure 5.2-c). In this case, the
content will instead be used as the default title of the newly created topic (which users can change
in the popup dialog directly as shown in Figure 5.4-a2 or later in the topics view).

To help users better manage the information that they have gathered in the holding tank,
Wigglite offers several additional features on top of the original SKeema system. First, it enables
users to sort the information cards by various criteria, such as in the order of valence ratings
or in temporal order (Figure 5.5-b). Second, it offers category filters (Figure 5.5-a) automatically
generated based on the encodings that users provided using wiggling (or edited later) and the
provenance of information (where it was captured from). Users can quickly toggle those on or
off to filter the collected information. For example, in Figure 5.5-b, the information with a “pos-
itive rating” or “negative rating” and collected from “amazon.com” was filtered and shown, as
indicated by the dark gray background of the corresponding filters (if none of the filters are en-
abled, all the information cards will be shown). Third, users can quickly filter out information
with a lower rating (e.g., indicating that it was less impactful to a user’s overall goal and decision
making) by adjusting the threshold using the “Focus on clips with a rating over threshold” slider
shown in Figure 5.2-f. As a result, clips with rating scores lower than the set threshold would
be automatically grouped together at the end and grayed out (Figure 5.2-d), and users can easily
archive or put them into the trash in a batch by clicking the “Move these clips to trash” button
(Figure 5.2-e). These organizational features further help users reduce clutter in the holding tank,
and provide a scaffold for them to start dragging and dropping clips into their respective topics.

Due to the limited screen size and use cases of a mobile device, we chose to only let users
view the clips along with their valence in the holding tank (Figure 5.5-c).

5.4.3 Design and Implementation Considerations
Here, we discuss important design and implementation considerationsmade through prototyping
Wigglite with JavaScript in a browser to achieve the design goals specified in section 5.3.2.
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Figure 5.5: Wigglite’s information holding tank shown both on desktop and on mobile, which houses content that
users collected through wiggling in the form of information cards (c). In addition, on desktop, users can apply
different filters (a) and sorting mechanisms (b) to the information cards.

5.4.3.1 Recognizing a wiggle gesture

For accurately recognizing the wiggle pattern, we explored several options. One way is to use an
off-the-shelf gesture recognizer such as the $1 [281] or the Protractor [172] recognizer. Although
these recognizers may be lightweight and easy to customize, they are fundamentally designed to
recognize distinguishable shapes such as circles, arrows, or stars, while the path of our wiggle
gesture does not conform to a particular shape that is easily recognizable (and we argue that it
should not conform to any particular shape, the sketching of which would increase the cognitive
and physical demand). A second option we investigated was to build a custom computer vision
based wiggle recognizer using transfer learning from lightweight image classification models
such as MobileNets [130]. Though these ML-based models improved the recognition accuracy in
our internal testing, they incurred a noticeable amount of delay due to browser resource limi-
tations (and limitations in network communication speed when hosted remotely). This made it
difficult for the system to perform eager recognition [233] (recognizing the gesture as soon as it
is unambiguous rather than waiting for the mouse to stop moving), which is needed to provide
real-time feedback to the user on their progress.

To address these issues, we discovered that a common pattern in all of the wiggle paths
that users generated with a mouse or trackpad during pilot testing share the characteristic that
there were at least five (hence the activation threshold mentioned in section 5.4.1) distinguish-
able back and forth motions in the horizontal direction, but inconsistent vertical direction move-
ments. Similarly, on smartphones, wiggling using a finger triggers at least five consecutive up
and down scroll movements in the vertical direction but inconsistent horizontal direction move-
ments. Therefore, we hypothesized that only leveraging motion data in the principle dimension
(horizontal on desktop, and vertical on mobile) would be sufficient for a custom-built recognizer
to differentiate intentional wiggles from other kinds of motions by a cursor or finger.

Based on our implementation using JavaScript in the browser, we found that it successfully
supports real-time eager recognition with no noticeable impact on any other activities that a user
performs in a browser. Specifically, the system starts logging all mouse movement coordinates
(or scroll movement coordinates on mobile devices) as soon as any mouse (or scroll) movement
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is detected, but still passes the movement events through to the rest of the DOM tree elements
so that regular behavior would still work in case there is no wiggle. In the meantime, the system
checks to see if the number of reversal of directions in the movement data in the principle direc-
tion exceeds the activation threshold, in which case a “wiggle” will be registered by the system.
After activation, the system will additionally look for a possible subsequent wide horizontal or
vertical swipe movement (for creating topics with priority or encoding valence to the collected
information) without passing those events through to avoid unintentional interactions with other
UI elements on the screen. As soon as the mouse stops moving, or the user aborts the wiggle mo-
tion before reaching the activation threshold, the system will clear the tracking data to prepare
for the next possible wiggle event.

5.4.3.2 Target Acquisition

In order to correctly lock onto the desired content without ambiguity, we explored two ap-
proaches that we applied in concert in Wigglite. The first approach is to constrain the system
to only be able to select certain targets that are usually large enough to contain a wiggling path
and semantically complete. For example, one could limit the system to only engage wiggle col-
lections on block-level semantic elements [1], such as <div>, <p>, <h1>-<h6>, <li>, <img>,
<table>, etc. This way, the system will ignore inline elements that are usually nested within or
between a block-level element. This approach, though sufficient in a prototype application, does
rely on website authors to organize content with semantically appropriate HTML tags.

The second approach is to introduce a lightweight disambiguation algorithm that detects the
target from the mouse pointer’s motion data in case the previous one did not work, especially
for a small <span> or an individual word. To achieve this, we chose to take advantage of the
pointer path coordinates (both X and Y) in the last five lateral mouse pointer movements, and
choose the target content covered by the most points on the path. Specifically, we used the same
re-sampling and linear interpolation technique introduced in the $1 gesture recognizer [281] to
sample the points on a wiggle path to mitigate variances caused by different pointer movement
speeds as well as the frequency at which a browser dispatches mouse movement events. On
mobile devices, since the vertical wiggling gesture triggers the browser’s scrolling events, the
target moves with and stays underneath the finger at all times. Therefore, we simply find the
target under the initial touch position.

When Wigglite is unable to find a target (e.g., when there is no HTML element underneath
where the mouse pointer or the finger resides) using the methods described above, it does not
trigger a wiggle activation (and also not the aforementioned set of visualizations), even if a “wig-
gle action” was detected. This was an intentional design choice to further avoid false positives as
well as to minimize the chances of causing distractions to the user.

5.4.3.3 Integration with existing interactions

Notice that the wiggling interaction does not interfere with common active reading interactions,
such as moving the mouse pointer around to guide attention, regular vertical scrolling or hor-
izontal swiping (which are mapped to backward and forward actions in both Android and iOS
browsers) [197, 261]. In addition, wiggling can co-exist with conventional precise content selec-
tion that are initiated with mouse clicks or press-and-drag-and-release on desktops or long taps
or edge taps on mobile devices [63,230]. Furthermore, unlike prior work that leverages pressure-
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sensitive touch screens to activate a special selection mode [58], wiggling does not require special
hardware support, and can work with any kind of pointing device or touch screen.

5.4.4 Implementation Notes
We implemented the wiggling technique as an event-driven Java-Script library that can be easily
integrated into any website and browser extension. Once imported, the library will dispatch
wiggle-related events once it detects them. Developers can then subscribe to these events in the
applications that they are developing. All the styles mentioned above are designed to be easily
adjusted through predefined CSS classes. The library itself is written in approximately 1,100 lines
of JavaScript and TypeScript code.

The Wigglite browser extension is implemented in HTML, TypeScript, and CSS and uses the
React JavaScript library [86] for building UI components. It uses Google Firebase for backend
functions, database, and user authentication. In addition, the extension is implemented using the
now standardizedWeb Extensions APIs [199] so that it would work on all major browsers, includ-
ing Google Chrome, Microsoft Edge, Mozilla Firefox, Apple Safari, etc. However, we primarily
targeted Google Chrome and Microsoft Edge to minimize testing efforts during development.

The Wigglite mobile application is implemented using the Angular JavaScript library [104],
the Ionic Framework [136] and works on both iOS and Android operating systems. Due to the
limitations that none of the current major mobile browsers have the necessary support for de-
veloping extensions, Wigglite implements its own browser using the InAppBrowser plugin from
the open-source Apache Cordova platform [31] to inject into webpages the JavaScript library that
implements wiggling as well as custom JavaScript code for logging and communicating with the
Firebase backend.

5.5 User Evaluation
We conducted an initial lab study to evaluate the usability and usefulness of Wigglite in help-
ing people collect information as well as encode aspects of their mental context while doing so.
Specifically, we aimed to address the following research questions:

• RQ1 [Accuracy]: Are wiggle-based interactions sufficiently accurate to help users collect
what they want?

• RQ2 [Efficiency]: Are wiggle-based interactions sufficiently low-friction to performwith-
out interrupting the primary reading and sensemaking activities?

• RQ3 [Expressiveness]: Are the proposed extensions of marking priorities and valence
useful in helping people encode their mental contexts?

• RQ4 [Integration]: Do wiggle-based interactions interfere with existing interactions that
people are already using?

5.5.1 Participants
We recruited 12 participants (6 male, 6 female; 3 students, 3 software engineers, 2 UX designers,
1 UX researcher, 1 medical doctor, 1 administrative staff member, and 1 entrepreneur) aged 21-38
years old (mean age = 28.5, SD = 4.5) through emails and social media. Participants were required
to be 18 or older and fluent in English. All participants reported experience reading and making
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sense of large amounts of information online for either professional or personal purposes on a
daily basis, and had tried or were using commercially available web clipping and organization
tools and systems, such as the Evernote Clipper, OneNote, or Notion.

5.5.2 Study Methodology
The study was a within-subjects design with each participant engaging in two tasks, one using
Wigglite with SKeema in the experimental condition, and the other just using SKeema in the
control condition, counterbalanced for order. For our control condition, SKeema provided the
affordances of a web clipping tool, which would provide a more conservative and matched base-
line than no tool support. Specifically, our control condition enabled participants to capture text
through a popup button (Figure 5.3-a1) to save highlighted text and a screenshot clipper instead
of the wiggle interaction. After saving the information, participants could set the priority of top-
ics and the valence of information in the workspace view (Figure 5.2), versus being able to encode
them as a continuation of the wiggle in Wigglite.

For each task, participants were presented with a product category they needed to research,
and a set of three Amazon pages from which they were required to collect information. Partici-
pants were instructed to read through the provided webpages, collect information, and organize
the information clips into topics, such as by different options or different criteria in which the
options should be evaluated. They were required to at least collect 10 information clips as well as
create a minimum of 3 topics with priority for each task. Participants had 15 minutes to complete
the task, but could inform the experimenter to move on if they finished early.

The two tasks were:

• (A) Choosing a digital mirrorless camera: participants were told to imagine that they were to purchase a new
mirrorless camera to take photos of their spouse and young kids on their weekend road trips.

• (B) Buying a vacuum cleaner: participants were told to imagine that they were to buy a new vacuum cleaner in
preparation for moving into a new house with a newborn baby and their two pets.

In order to minimize differences between tasks and participant decision making, we provided
a fixed set of web pages per task, each with approximately eight screens of content. As described
in the results, the two tasks took approximately the same amount of time for participants to finish,
and were counterbalanced in order and randomized across conditions.

Each study session started by obtaining consent and having participants fill out a demographic
survey. Participants were then given a 10-minute guided tutorial showcasing the various features
of Wigglite as well as the baseline system, and a 10-minute free-form practice session to familiar-
ize themselves with the features of both systems. At the end of the study, participants completed
a survey and engaged in a semi-structured interview about their experience with the tool. The
interview focused on participants’ perceptions of using the wiggle-based interactions. The ques-
tions probed the perceived effectiveness of wiggling, their current practices around collecting
information, and scenarios where they thought wiggling would be useful and how they would
modify it to be more useful. The interviews were audio-recorded and transcribed, after which
qualitative coding and thematic analysis [62] were performed.

Each study session took approximately 60 minutes to complete, using a designated MacBook
computer with Google Chrome andWigglite installed as well as a Logitech MXMaster 2S mouse.
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Condition Overhead
cost

Time
(seconds)

n of clips
collected

n of topics
created using
wiggling

n of topics
created separately in
the workspace view

Total n of
topics created

Task A Baseline 33.0% (8.60%) 713.7 (76.0) 21.0 (7.03) N/A 4.17 (1.17) 4.17 (1.17)
Wigglite 14.0% (7.89%) 558.7 (76.5) 38.3 (5.28) 7.50 (1.05) 0.50 (0.84) 8.00 (1.89)

Task B Baseline 30.40% (7.31%) 692.0 (131.4) 19.5 (6.81) N/A 4.67 (0.52) 4.67 (0.52)
Wigglite 12.8% (2.74%) 515.7 (54.3) 37.3 (8.64) 7.17 (1.17) 0.50 (1.22) 7.67 (2.39)

Average Baseline 31.7% (7.73%) 702.8 (102.9) 20.3 (6.68) N/A 4.42 (0.90) 4.42 (0.90)
Wigglite 13.4% (5.67%) 536.8 (67.0) 37.8 (6.85) 7.33 (1.07) 0.50 (1.00) 7.83 (2.07)

Table 5.1: Statistics of the performance measures in the study. Standard deviations are included in the parentheses.

5.6 Results
All participants were able to complete each task within the specified 15 minute time limit. Below,
we compile together both quantitative and qualitative evidence to evaluate Wigglite with respect
to our four design goals and research questions.

5.6.1 RQ1 [Accuracy]
First, evaluate if the wiggling gestures are accurate enough to help users collect and express
what they want. Specifically, we looked for cases where: (1) participants hit the undo button
to dismiss an incorrect wiggle activation and redo the wiggling due to Wigglite picking up the
wrong target content, which turned out to be on average 0.67 (SD = 0.65) times per person per
task, and only accounted for 1.48% of the 45.16 (SD = 8.82) total wiggle actions participants on
average performed per task; (2) participants had to use the popup dialog to immediately edit the
valence or topic priority because Wigglite picked the wrong swipe direction, which turned out to
be 0; (3) participants had to redo the wiggling gesture because the previous one they performed
did not activate at all, which turned out to be on average 0.92 (SD = 0.67) times per person per
task, and only accounted for 2.01% of the total wiggle actions participants on average per task.

This evidence suggests that the wiggling technique provided by the current Wigglite system
is sufficiently accurate and robust, at least with ample amount of training and practice. It would
be interesting for future work to explore how it performs in the wild, potentially without much
upfront practice, and examine whether and how people’s wiggling accuracy and performance
evolve over time.

5.6.2 RQ2 [Efficiency]
Second, we are interested in understanding if Wigglite creates a more fluid experience when col-
lecting and triaging information with less interruption compared to the baseline condition. For
this comparison, we opted to measure two key metrics: the overhead cost of using a tool to col-
lect and triage information, and the total amount of time it took for participants to finish each
task. For theWigglite condition, we calculate the overhead cost as the portion of the time partici-
pants spent on directly interacting withWigglite (performing wiggling gestures, interacting with
the popup dialog if necessary, filtering the information clips, organizing them in the workspace
view, etc.) out of the total time they used for a task (vs. reading and comprehending the web
pages) [177, 179]. Similarly, in the baseline condition, the overhead cost accounts for situations
where participants use the highlighting or screenshot feature to collect information, organize
them in the workspace view, etc.
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Figure 5.6: Using Wigglite incurred significantly less overhead cost (a) and helped participants finished the tasks
significantly faster (b) when compared to the baseline condition in the user study.

We conducted a two-way repeated measures ANOVA to examine the within-subject effects
of condition (Wigglite vs. baseline) and task (A vs. B) on overhead cost. There was a statisti-
cally significant effect of condition (F(1,20) = 40.7, p < 0.001) such that the overhead cost was
significantly lower (58% lower, as shown in Table 5.1 and Figure 5.6-a) in the Wigglite condition
(Mean = 13.4%, SD = 0.06) than in the baseline condition (Mean = 31.7%, SD = 0.08). There was no
significant effect of task (F(1,20) = 0.46, p = 0.51)). In addition, a two-way repeated measures
ANOVA was conducted to examine the within-subject effects of condition (Wigglite vs. base-
line) and task (A vs. B) on task completion time. There was a statistically significant effect of
condition (F(1,20) = 20.8, p < 0.001) such that participants completed tasks significantly faster
(23.6% faster, as shown in Table 5.1 and Figure 5.6-b) with Wigglite (Mean = 536.8 seconds, SD =
67.0 seconds) than in the baseline condition (Mean = 702.8 seconds, SD = 102.9 seconds). Again,
there was no significant effect of task (F(1,20) = 0.77, p = 0.38).

As the condition had a statistically significant impact on both the overhead cost as well as the
task completion time (with faster completion and lower overhead cost in Wigglite conditions),
Wigglite indeed helped participants reduce the overhead costs of collecting and triaging infor-
mation and speed up their sensemaking process overall, even though the majority of their time
was necessarily spent reading and understanding the material in both conditions.

Furthermore, in the post-study interview, participants overall appreciated the increased effi-
ciency afforded by Wigglite, especially using the wiggling gestures. Many (9/12) mentioned that
the perceived workload to collect information that they have encountered was minimal, saying
that “It felt like I didn’t do anything to get those snippets into the system” (P3), and was fluid enough
that it did not interrupt their flow of reading the task pages, such as “I just wiggle and move on,
in fact, when I am wiggling on something, my eyes are already onto the next paragraph, no more
stopping to do the regular clipping thing any more” (P11). Therefore, Wigglite did offer a more
fluid experience when collecting and rating information with less interruption.

5.6.3 RQ3 [Expressiveness]
Third, we are also interested to know to what extent Wigglite induces changes in people’s behav-
ior, especially given the natural extension that wiggling affords to encode priorities and valence.

As shown in Table 5.1, participants collected significantly more information using wiggling
(on average 37.8 clips, SD = 6.85) than when using the conventional selecting or screenshot work-
flow (on average 20.3 clips, SD = 6.68) (p < 0.01), despite spending less time on the tasks. Among
the collected information clips using wiggling, 75.3% of them were encoded with either a posi-
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tive or negative valence. Similarly, participants created significantly more topics using Wigglite
(on average 7.83 topics, SD = 2.07) than in the control condition (on average 4.42 topics, SD =
0.90) (p < 0.01), where topics were required to be created separately in the workspace view. It is
also worth noting that using wiggling to create topics (7.33 times, SD = 1.07) almost eliminated
the need to separately (0.50 times, SD = 1.00) create topics (granted that most participants did
at least edit the title of the topics in the popup dialog or in the workspace view to make them
more succinct and easier to read). This evidence suggests that participants indeed were able to
use Wigglite to externalize the perceived utility of a particular piece of information as well as
their mental judgements of how it aligned with their goals in situ.

Furthermore, in the post-study interviews, some (4/12) participants reflected that Wigglite
would enable them to express their perceived utility in a way that is also useful for subsequent
sorting and ranking. For example, P5 mentioned that “I really enjoyed the threading [creating
topics with priorities] feature, being able to say something is important or extra important on the
spot would help me stay on top of my todo list.” However, perhaps due to the limited scale of
the lab study, we did not observe significant differences in the types of information participants
used as topics–most of them are about the different options as well as some criteria to evaluate a
product. Future and potentially larger-scale investigations are required to understand the types
of information users collect using a lightweight gesture like wiggling versus using conventional
capturing methods.

5.6.4 RQ4 [Integration]
Last but not least, we would like to understand if the wiggle gesture would interfere with partic-
ipants’ normal behaviors during web browsing, such as unconsciously using the mouse pointer
to guide their attention [134], clicking [123], or scrolling (false positives). To measure this, we
looked for cases where participants hit the undo button to dismiss a wiggle activation due to
Wigglite had wrongfully recognized some regular mouse movements as a wiggle, which turned
out to be 0 across the board. This provides evidence that the wiggling gestures added byWigglite
do not interfere with the existing interactions and user behaviors.

5.6.5 Other Subjective Feedback
In the survey, participants reported (in 7-point Likert scales) that they thought the interactions
with Wigglite were understandable and clear (Mean = 6.25, SD = 0.45), Wigglite was easy to
learn (Mean = 6.42, SD = 0.67), and they enjoyed Wigglite’s features (Mean = 6.25, SD = 0.62).
In addition, compared to the baseline condition (Mean = 5.75, SD = 0.62), they thought using
Wigglite (Mean = 6.17, SD = 0.39) would help make their information collection and triaging
processes more efficient and effectively (p = 0.017), and would recommend Wigglite (Mean =
6.33, SD = 0.49) over the baseline version of Wigglite (Mean = 5.92, SD = 0.29) to friends and
colleagues (p = 0.007), both differences were statistically significant under paired t-tests.

In addition, some participants reflected on the playfulness and attractiveness of the wiggle
interactions and how it encouraged them to collect information compared to what they normally
have to go through. For example, P8 said: “It’s fun, you know? I didn’t quite believe it at the
beginning, but it actually made grabbing stuff so much fun”, and P1 suggested that “somehow with
this, I don’t think going through something that I’m not familiar with would be as daunting as it used
to be”. Four of the participants evenwent on to ask whenWigglite will be released publicly so that
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they could use it for their own work and personal tasks, and wondered if they could customize
the system, such as by “writing some sort of plugin, like the one I wrote for Obsidian [206], to map
the different directional swipes to what I want depending on the situations that I’m in” (P11).

5.7 Discussion and Limitations
One potential limitation to wiggling is the suitability of its rapid back-and-forth movements to
user populations with motor impairments or advanced age, for example, users with hand tremors.
There are several ways inwhichwigglingmight bemore suitable than expected or relatively easily
adapted to such populations. First, since wiggling uses the initial mouse location as its selection
anchor, a user can take their time adjusting to arrive at the correct area (which would still require
less accuracy than traditional highlighting). Once there, they could initiate selection without
clicking, which could address mouse slip while clicking, a common problem with advanced age
or motor impairment [87,88,266]. If issues with tremor lead to lower accuracy, one approach that
might be investigated is smoothing mouse movement using generative models trained on a user’s
individual behavior (e.g., [277]). More generally, additional research is needed to understand the
suitability of wiggling across a variety of user capabilities, contexts, and devices [164, 165].

While sensemaking in various domains might exhibit different characteristics and therefore
lead to different information foraging behavior patterns, we chose both the study tasks to be in
the domain of comparison shopping to at least make sure that the tasks are roughly of equal dif-
ficulty. In addition, product comparison shopping embodies many of the common sensemaking
properties and needs that people have, for example, it is information dense so that users would
potentially have to read and process lots of information and collect quite a few items, and users
would often have to interpret the information based on their own goals and context, so that there
is a need for them to externalize their mental context alongside the collected information. Nev-
ertheless, we would like to address this limitation by evaluating Wigglite in a variety of domains
where sensemaking usually occurs, such as students conducting literature reviews, patients re-
searching medical diagnoses, and programmers learning unfamiliar APIs.

Finally, due to the limited set of capabilities of theWigglite mobile application and the similar-
ity of features with its desktop counterpart, we did not evaluate the mobile app in our lab study,
and therefore could not directly compare the wiggle-based collection and triaging techniques for
sensemaking to a baseline. Informally in our pilot testing, using wiggling to collect information
and optionally encode a positive or negative valence was much faster and more convenient than
any common information capturing methods that people currently use on mobile devices, such as
copying and pasting text and taking screenshots or photos [260]. Nevertheless, we would like to
evaluate the wiggle-based techniques and Wigglite for mobile in a formal lab study in the future.
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Chapter 6

Strata: Evaluating and Reusing
Summarized Knowledge

This chapter was adapted from my published paper:

Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. “To Reuse or Not To Reuse? A Frame-
work and System for Evaluating Summarized Knowledge.” Proc. ACM Hum.-Comput. Interact. 5,
CSCW1, Article 166 (April 2021), 35 pages.
Video: https://youtu.be/NuL-jtf710E

6.1 Overview
As the amount of information online continues to grow, a correspondingly important opportunity
is for individuals to reuse knowledge which has been summarized by others rather than starting
from scratch. However, appropriate reuse requires judging the relevance, trustworthiness, and
thoroughness of others’ knowledge in relation to an individual’s goals and context.

In this chapter, we explore augmenting judgements of the appropriateness of reusing knowl-
edge in the domain of programming, specifically of reusing artifacts that result from other de-
velopers’ searching and decision making. Through an analysis of prior research on sensemaking
and trust, along with new interviews with developers, we synthesized a framework for reuse
judgements (Table 6.1). The interviews also validated that developers express a desire for help
with judging whether to reuse an existing decision. From this framework, we developed a set
of techniques for capturing the initial decision maker’s behavior and visualizing signals calcu-
lated based on the behavior, to facilitate subsequent consumers’ reuse decisions, instantiated in
a prototype system called Strata. Results of a user study suggest that the system significantly
improves the accuracy, depth, and speed of reusing decisions. These results have implications for
systems involving user-generated content in which other users need to evaluate the relevance
and trustworthiness of that content.
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6.2. BACKGROUND AND FORMATIVE INVESTIGATIONS
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Figure 6.1: Strata’s user interface. Strata helps developers evaluate three main facets of appropriateness of reusing
a Unakite comparison table with options (e), criteria (f), and evidence (g) through three overview panels: (a) the
Context panel, the Trustworthiness panel, and the Thoroughness panel. Each panel contains the groups (such as (b),
(c), (d)) of appropriateness properties to directly address developers’ information needs. Developers will also be
alerted of any potential issues with respect to each facet (e.g., b2, c3, c4).

6.2 Background and Formative Investigations
Although Unakite has been shown through lab studies to help the initial developer in making a
programming decision, it displays few of the signals suggested by the research discussed above
on trust and sensemaking handoff that could help consumers of the table decide whether it is
appropriate for them to reuse it. For example, the initial table creator may or may not have been
thorough in their research; may or may not have the same context and environment; or may or
may not care about the same goals as the consumer. Althoughwe useUnakite as a specific context,
there aremany similar examples of developers creating comparison tables in code documentation,
blogs, and Stack Overflow [8, 9], which are typically even sparser in terms of signals for reuse
appropriateness, with no supporting interactivity or drill-downs possible.

6.2.1 Formative Interviews
To characterize the prevalence and types of issues developers have with knowledge reuse, specif-
ically with reuse of programming decisions, we conducted semi-structured interviews with 15
developers (5 female, 10 male). Participants were recruited through mailing lists, social media
postings, and word-of-mouth. To capture a variety of processes, we chose 8 professional devel-
opers, 3 doctoral students, and 4 master students. While we do not claim that this sample is
representative of all developers, the interviews informed and motivated the development of the
subsequent framework (Table 6.1) and the design of the Strata system.

We began by asking participants about their experiences in reusing someone else’s decisions
when programming and how frequently would that situation occur in their work. We then ex-
plored how they manage these situations and their information needs, in particular, what ques-
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Facet Information
Need

Selected References in
Prior Research

SampleQuotes in Formative Study Selected Supporting Features
in Strata

C
on
te
xt

Goals of the
original decision

• Search queries are useful for encod-
ing task goals & contexts in various
settings like asynchronous collabora-
tions [39, 198, 215, 216, 247, 283].

• “This looks like it’s trying to pick a
speech recognition API, but what I want
is actually text to speech.”

• Keeping track of the author’s
search queries to reflect his or her
task goal.

Explanation or
contextualization
of
information

• Recontextualization of information
helps with understanding [177, 187].
• Clarity and informativeness of web-
site content improves understanding
[92, 264].

• “What does this ‘very efficient’ mean,
is it ‘memory’ or ‘time’ efficient?”
• “Is it [a sorting algorithm] ‘fast’ only
when there’re a few hundred data points
or also when there are millions of data
points?”

• Keeping track of the surroundings
along with the information snip-
pets and presenting them as con-
textual explanations.

Situational
awareness

• Awareness of common ground fa-
cilitates sensemaking handoff [66,
245, 247].
• Users need awareness of each oth-
ers’ actions in order to perform their
tasks better [27, 198, 201, 215].

• “I want to solve it with pure JavaScript,
but it seems that most of the answers
here are actually written using jQuery?”
• “I’m using Python 2.7 at the moment,
which is fairly old, does this example
also use this version?”

• Detecting information about lan-
guages, frameworks, and their ver-
sions mentioned in information
snippets with a predefined yet eas-
ily extensible list of detectors.

Tr
us
tw
or
th
in
es
s

Source credibility
and diversity

• Source credibility affects trustwor-
thiness of information [74,85,92,191,
264].
• Sources similar to what a consumer
usually uses are more likely to be
deemed credible [193, 244].

• “If it’s from Stack Overflow, I’m usu-
ally fine with it. But if it’s from some
random blog posts written by some ran-
dom guy, I would think twice.”
• “I wonder if all of these just came from
the official documentation or there’re
also other developer forums.”

• Visualizing the distribution of in-
formation snippets across different
domains (websites).
• Alerting consumers of potential
untrusted domains.

Information
up-to-dateness

• Information currency affects its
perceived credibility [24, 45, 191].

• “Is this speed comparison [between Re-
act, Angular, and Vue] up-to-date now
that Angular 9 was just released?”

• Extracting and surfacing the last
updated time of information snip-
pets.

Information
popularity

• People apply the endorsement
heuristic to evaluate credibil-
ity [191].
• People seek social proof when eval-
uating credibility [244].

• “If there’re a lot of other devs [who]
also think this is a good idea, then I’m
much more comfortable to use it.”

• Extracting and surfacing signals
showing information popularity,
such as the up-vote count of an an-
swer on Stack Overflow.

Information
consistency

• People apply the consistency heuris-
tic to evaluate credibility [191].
• People seek more than one source
to verify information [190].

• “It claims PyTorch is much easier to
learn than Tensorflow, but I wonder if
there’re people suggesting otherwise.”

• Alerting consumers if there are
conflicting (both positive and neg-
ative) ratings in any of the table
cells.

Author credibility • The author’s level of expertise
affects information trustworthiness
[74, 149, 244].
• Disclosing patterns of past perfor-
mance helps people evaluate trust-
worthiness [149, 250, 258].

• “Does the table author know what he’s
doing?”
• “Is the author saying all the nice things
about Caffe because he has lots of expe-
rience with it or because he’s biased?”

• Surfacing credibility and bias sig-
nals from the table author’s Github
profile, such as their primary pro-
gramming language, number of
stars on their repositories, and af-
filiation.

Th
or
ou
gh
ne
ss

Research process
and effort

• External representations handed off
should indicate prior investigative
process and insights [215, 216, 289],
how much work had been done, and
how mature the representation was
[245, 247].

• “Howmuch effort was put into making
this decision?”
• “What did the author focus on?”

• Keeping track of and visualiz-
ing the author’s activities on an in-
teractive timeline view, including
search queries, pages visited, dura-
tion of stay on the pages, informa-
tion snippets collected, etc.

Alternatives or
competitors

• Knowledge and sensemaking re-
sults should indicate their coverage
and scope [74, 191].

• “I heard anecdotally that Svelte gives
you much better performance than all
these big (JavaScript) frameworks [Re-
act, Angular, and Vue]. I should take a
look at that before I decide.”

• Finding and surfacing commonly
searched-for alternatives men-
tioned in Google autocomplete
suggestions.

Usable artifacts • Developers need help finding and
reusing code examples [46, 208, 221].

• “Which option was chosen in the end?”
• “[Are there] any code snippets that
I can immediately plug into mine and
test?”

• Extracting and surfacing code ex-
amples from information snippets.

Table 6.1: A framework summarizing the threemajor facets (column 1)when evaluating the appropriateness to reuse
knowledge, including people’s specific information needs (column 2), selected evidence from prior work (column 3),
sample quotes from our formative study interviews (column 4), and features we devised to support the information
needs in the subsequent Strata system (column 5).
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tions do they have when evaluating the appropriateness to reuse and how answers to those ques-
tions may affect their final verdicts on reusability. In addition to eliciting facts on their past
experiences, we also presented them with a set of decision tables in the running Unakite applica-
tion (which were directly adapted from real tables online, e.g., [243]) as well as the corresponding
background situational context, and asked them to judge if they could reuse these tables in those
given situations. We asked them to speak about any questions they had and perform any inquiry
they wanted to answer those questions (e.g., checking the sources, searching for evidence online,
etc.). Finally, we wrapped up with questions probing their experience with explaining their de-
sign rationale to others, and whether and how do they convince others that their decisions are
appropriate to be reused.

Interviews were conducted either in person or remotely by the first author and lasted 30
minutes. Theywere audio-recorded and then transcribed. In addition, screenshots of participants’
computers were taken for later analysis when applicable. Then, the first author went through
the transcriptions and coded them via an open coding approach [62], which included multiple
iterations of discussions with the research team. Our key findings are presented below.

6.3 Framework
Data from the formative study suggested that developers would benefit from support in evaluat-
ing the appropriateness of reusing decisions. For example, there aremany indicators that could be
beneficial to surface to help usersmake these judgements, ranging from the expertise of the author
to the quantity and legitimacy of the sources used. Although there has been little prior work char-
acterizing the most important factors for decision reuse specifically by developers, as listed above
there has been significant work discussing frameworks and measurements relevant to evaluat-
ing and reusing knowledge, such as online information credibility judgement [190, 191, 192, 193],
asynchronous collaboration [198, 216], and sensemaking handoff [90, 245, 246, 247]. From these
research papers, we extracted properties and signals that would be important and relevant to
decision reuse for developers.

By coding and synthesizing the aforementioned prior work as well as the formative study re-
sults through affinity diagramming, we identified three major clusters, that we call facets, when
evaluating the appropriateness for reuse in programming: the original author’s decision making
context, and the trustworthiness and thoroughness of the resulting decision. We used these as a
guide in developing an integrated framework, shown in Table 6.1, consisting of the three identi-
fied facets (column 1), specific information needs of developers with regard to each facet (column
2), selected evidence for the importance of these information needs as well as possible solutions
to address them from prior work (column 3), and sample quotes from our formative interviews
(column 4). These insights together inspired the features for our subsequent Strata system (col-
umn 5). We now discuss the framework in detail, along with the support from the prior work
and the formative interviews. The design of Strata follows in section 6.4.

6.3.1 Context
Although in prior work the importance of understanding the trustworthiness of information of-
ten outshines everything else when evaluating the appropriateness to reuse [149, 187], we were
surprised to find out that, at least in the domain of programming decision reuse, developers of-
ten ask questions about the context of a previously-made decision before they proceed to assess
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trustworthiness (9/15). Cited reasons include that one needs to know “how relevant it is to what
I am doing” (P5) first, and if the context of the original decision does not align very well with
the problem at hand, one would often stop the evaluation process and move on to look for new
solutions. For example, if a developer is working in Java, solutions that only work in JavaScript
may not be worth investigating.

6.3.1.1 Goals of the original decision

When evaluating context, most (12/15) participants asked questions about the goals and purposes
of the author of the decision in order to compare those with their own. For example, “this looks
like it’s trying to pick a speech recognition API, but what I want is actually text to speech,” (P14) and
“people say they want to do one thing, but after taking a closer look, they really are doing this other
thing, which often makes me a tad frustrated” (P7). Indeed, prior research suggests that the goals
of decisions are often treated as “self-evident” given the results, and therefore are often not kept
track of by the authors [159, 160]. On the other hand, goal mismatch does not always prevent
developers from further evaluating a decision; instead, it can become a “learning opportunity” for
them to “know more about a new technology or design pattern” (P11).

Furthermore, when asked about their experience of making decisions, participants reported
that their goals may very well evolve with their exploration process rather than remaining fixed
from the beginning (7/15). For example, “I started out trying to choose a framework to build amobile
app for both Android and iOS, but later I stumbled upon this progressive web app thing that totally
fulfills all of my requirements, so I ended up trying to learn more about that, and sort of abandoned
the mobile app route that I was originally planning to take” (P3). This motivated us to develop
features (e.g., keeping track of all of the search queries used) to capture not only an author’s
original goal but also the evolving nature of that goal, so that later knowledge consumers could
have a better grasp of how the author’s goal changed throughout a decision making process.

6.3.1.2 Explanation or contextualization of information

One of the frustrations that participants reported having is that they often have trouble under-
standing the meaning of some of the criteria and evidence used in online decision tables (8/15).
For example, “what does this ‘very efficient’ mean, is it ‘memory’ or ‘time’ efficient?” (P10). In some
other circumstances, they suspect that evidence may not hold true when external constraints or
requirements change: “is it [a sorting algorithm] ‘fast’ only when there’re a few hundred data points
or also when there are millions of data points” (P1). Indeed, prior work suggests that clarity and
informativeness of information have a significant impact on how well it is understood [92, 264],
and presenting information along with its original context (recontextualization) is considered a
good way to help people understand its meaning and the conditions in which it is correct or
accurate [91, 177, 187].

In addition, it was also suggested by participants that it is not always easy to recontextualize
information, especially when the context is not available (6/15). Unakite partially addressed this
by allowing users to create a snippet out of a large block of information in its original HTML
format as well as automatically recording the corresponding source URL for later retracing [177].
In Strata, we build on that by introducing the concept of a context snapshot, which, at capture
time, automatically keeps track of the surroundings of an information snippet in addition to the
snippet content itself and its source URL. When consumers are reviewing a snippet, they will be
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able to benefit from the possible explanations such as code examples and performance metrics
contained in the surroundings that would otherwise be missing from the snippet content.

6.3.1.3 Situational awareness

An essential part of context is the situation in which the information will be reused. In program-
ming, this corresponds to the languages, libraries, and platforms being used, which are often re-
ferred to as dependencies, and participants reported checking if a given decision shares the same
language or library usage as to what they have to work with (8/15). For example, P7 asked “I want
to solve it with pure JavaScript, but it seems that most of the answers here are actually written using
jQuery.” Furthermore, version mismatch has been a frequent issue for reuse in programming.
With the continuous rise of the open source software development model [112] and the increas-
ing number of frameworks, libraries, languages, and patterns [3, 5, 13], version and dependency
mismatches and errors can cause troubles from missing features to breaking dependent down-
stream applications [15]. Indeed, participants reported checking for versions before they commit
to adopting a certain solution (6/15). For example, “I’m using Python 2.7 at the moment, which
is fairly old; does this example also use this version, or is it using Python 3.5?” These inspired us
to try to automatically detect the language, library, platform, and version information whenever
possible when an author collects information online, and surface this to the consumer to directly
address their information needs.

6.3.2 Trustworthiness
Asmentioned, information trustworthiness or credibility is often used as a surrogate for verifying
information correctness [127], and is one of the most reported and researched facets during the
evaluation of the appropriateness to reuse knowledge across many domains [187, 191]. Our in-
terview data shows that it plays a crucial role in the domain of reusing decisions in programming
as well.

6.3.2.1 Source credibility and diversity

As suggested by prior work, source credibility has a significant impact on the trustworthiness of
information [74,85,92,191,264]. Not surprisingly, all participants in our study reported this same
belief — they are more inclined towards trusting information from sources that are official (e.g.,
API documentation websites) or with a very good reputation within the community (e.g., Stack
Overflow), and are more likely to reject information from sources that they have little experience
with, echoing the reputation heuristic and the expectancy violation heuristic [193,244] that people
generally use to assess trustworthiness. For example, P12 said: “if it’s from Stack Overflow, I’m
usually fine with it. But if it’s from some random blog posts written by some random guy, I would
probably think twice.”

It is worth noting that in addition to credibility, source diversity also plays a role in trust-
worthiness, according to 7 of the 15 participants. They thought that the more diverse the sources
used are, the more likely that the evidence in the table has been “peer reviewed” or “confirmed
by a bunch of other devs”, and “seeing essentially the same thing independently said on a couple
of different sites and forums” gives them “peace of mind”. We believe that source diversity also
works in concert with information popularity and consistency, which we will discuss in detail
in the upcoming sections. This motivated us to provide source domain information as a direct
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signal for each of the information snippets collected as well as a visualization of how all the col-
lected snippets are distributed across the different domains, enabling users to easily assess source
credibility and diversity.

6.3.2.2 Information up-to-dateness

There was a consensus among the participants that in order to make a correct decision, the ev-
idence used must be up-to-date (11/15). Indeed, prior work also suggests that information cur-
rency is another crucial element contributing to its credibility, with the intuition that the older
a piece of information is, the more obsolete it gets, which implies a lower level of trustworthi-
ness [24,45,191]. This is especially true in today’s software development world, where languages
and libraries are constantly being updated and older versions are quickly rendered obsolete by
newer versions. For example, P6 was keen to stay on top of the state of the art of the JavaScript
frontend framework competition: “Is this speed comparison [between React, Angular, and Vue] up-
to-date now that Angular 9 was just released?” However, the above heuristic can be taken with a
grain of salt by some participants, citing reasons that software that was updated a long time ago
does not necessarily mean that it is obsolete. As P4 put it, “the last release of Haskell was like 10
years ago, but it’s still the latest version, and I still use it all the time in my work.” Nevertheless,
we elect to provide users with direct access to at least the last updated timestamp information
of each snippet that the author collected in an effort to help consumers assess up-to-dateness
faster. In addition, the separate information about versions, as mentioned above, allows users to
use whichever property is most relevant.

6.3.2.3 Information popularity

Echoing what has been reported in prior work that people seek social proof when evaluating
information credibility [191, 244], participants (8/15) said that the popularity of information also
plays an important role in its trustworthiness, with the general rule suggesting that the more
people that stand behind a solution, the more trustworthy it is. For example, P9 said: “if there’re
a lot of other devs [who] also think this is a better idea, then I’m much more comfortable to use it.”
This is similar to the endorsement heuristic [193], which suggests that people are inclined to per-
ceive information and sources as credible if others do so too. This inspired us to directly present
consumers with popularity signals (such as an answer’s up-vote number on Stack Overflow, or
the number of claps of an article on Medium.com) from where snippets are collected.

Also included in the endorsement heuristic is that people sometimes follow others’ endorse-
ments without much scrutiny of the site content or source itself [193]. However, some of our
study participants suggest quite the opposite (7/15) — they often put much more emphasis on
source credibility over the popularity of specific information snippets from that source. For ex-
ample, “in retrospect, if an answer is taken from Stack Overflow, I don’t really care about its up-vote
number or if it’s the officially accepted one, I’ll just trust it and use it” (P3), or “I don’t really look at
how many people clapped over a Medium article, the fact that it’s from Medium.com is usually good
enough for me” (P8). Though seemingly inconsistent with prior work, we do not claim that this
is typical in the domain of programming — one possible explanation is that websites like Stack
Overflow by default rank the most up-voted posts at the very top with the specific intention to
present the most popular information to readers.
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6.3.2.4 Information consistency

In addition to source credibility, diversity, up-to-dateness, and popularity, a few participants
(5/15) suggested that having more corroborating evidence implies that a piece of information is
more trustworthy. For example, P6 said: “This [deep learning library comparison chart] claims that
PyTorch is much easier to learn than Tensorflow, but I wonder if there’re people suggesting otherwise?
I kind of want to see at least one other expert that has experience with both and also says PyTorch is
better.” Prior research has also found that people will apply the consistency heuristic to evaluate
credibility, validating information by checking different websites to make sure that the infor-
mation was consistent [190, 193]. Meanwhile, consistency also implies the converse — having
contradicting evidence will undermine the trustworthiness of an existing piece of information.

6.3.2.5 Author credibility

Prior work has shown that the author’s level of expertise impacts the credibility of information
[74,244]. This is especially significant in the domain of programming, where there is a substantial
difference between novice and expert developers in their experience and ability to evaluate code
and libraries [37]. For example, when shown with a comparison table on the topic of choosing
a deep learning framework, P11 asked: “Does the author know what he’s doing? I’d rather take
advice from someone who’s an expert rather than some random undergrad.” However, participants
(4/15) also reported that there is no easy way to tell the level of expertise of a table author or if
that expertise matches with the topic of the table in the current Unakite system.

Another factor that impacts the credibility of an author is if he or she is biased, possibly due
to his or her affiliation or personal preferences — for instance, P12 asked: “is the author saying
all the nice things about Caffe [a deep learning framework] because he has lots of experience with
it or because he’s biased?” However, one participant also acknowledged that sometimes these
“biases” may not be as negative as it sounds — it could be an indication that an author is highly
experienced with one particular option and therefore gives favorable evidence for it. To address
the above concerns, prior research suggests that disclosing patterns of an author’s past perfor-
mance may be a good indication of his or her expertise as well as possible biases [149, 250, 258].
This motivated us to at least allow the author to provide a link to his or her GitHub profile, and
Strata will automatically compute and show relevant expertise metrics (contribution activities,
most proficient programming languages, etc.) and affiliation information to the consumer.

6.3.3 Thoroughness
Another important facet when evaluating the appropriateness to reuse knowledge is thorough-
ness, which deals with the process and the amount of effort used when creating the knowledge,
its coverage and scope, as well as any usable artifacts discovered or produced in the process.

6.3.3.1 Research process and effort

Prior work in sensemaking handoff recommends that when knowledge is handed-off from the
author to the consumer, it should let the consumer be aware of the prior investigative process
and insights [215, 216, 289], such as how much work has been done, and how mature the knowl-
edge representation is [245, 247]. We also found relevant evidence from the interviews: three
participants recalled similar experiences where they learned that the previous decision makers
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spent little time on exploring the decision space, and therefore the results were “too immature to
be picked up and reused” and “missing obvious criteria that you should definitely not leave out”, and
they ended up choosing to ignore those previous decisions and started from scratch to conduct
their own research instead. This motivated us to automatically keep track of some of the authors’
actions as they create tables using Unakite, such as the search queries used, the pages visited, the
duration of their stay on each page and each query, etc. We then use these data to compute key
statistics as well as timelines and visualize them to the consumers to help them better understand
the author’s research and exploration process.

P9 also envisioned that having a holistic understanding of the author’s process would give her
the ability to parse out the author’s intention and focus (which may shift throughout the process,
as discussed earlier), and therefore provide hints about what she needs to focus on next if she
were to reuse this table as the basis for her own decision.

6.3.3.2 Alternatives or competitors

In addition to the process and effort, prior research recommends that knowledge and sensemak-
ing results should also make apparent their coverage and scope [74, 191], for example, what al-
ternatives have been considered, since not all options will necessarily appear in a Unakite table
(especially when the author thinks one does not fit his or her particular needs and is therefore not
worth further investigation). However, this does not necessarily imply that the option is inferior
for the consumer. In our study, a few of our participants (6/15) were also interested in know-
ing what would those alternatives (or competitors) be and how they compare with the existing
options before they could know if it is appropriate to reuse a table. For example, “I heard anec-
dotally that Svelte gives you much better performance than all these big (JavaScript) frameworks
[React, Angular, and Vue]. I should take a look at that before I decide. Or maybe there’s again
something else?” (P14). This motivated us to take advantage of the Google Autocomplete API to
automatically obtain commonly searched-for alternatives to the options that are already in the
table, and present these alternatives to the consumers.

6.3.3.3 Usable artifacts

Lastly, participants (10/15) stressed the need for code examples and other usable artifacts from a
decision, just as prior work reported that developers need help finding and reusing code examples
[46,47,208,221]. For example, P2 directly asked for code examples and the author’s chosen option
when presented with a decision table on various Java AST parsers: “[are there] any code snippets
that I can immediately plug into mine and test? Or if you can tell me which is the one that the author
used, I’ll just try that one first.” A few (3/15) participants also suggested that quickly trying out
code examples to see if they work or not supersedes almost all other information needs. However,
we do not claim this is typical, and later follow-up exchanges with these participants revealed
that a vast majority of their current work is low-level detailed implementation, where making
sure the code works is of paramount importance. Nevertheless, we implemented techniques
to automatically extract code blocks from various snippets and present them to consumers. In
addition, we also detect authors’ copy events in the browser, and use those as the basis for a
heuristic to tell which option the author chose for the decision.
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Figure 6.2: On Strata startup, none of the groups are activated to keep the Unakite table on the right clean and
concise. Groups can also be collapsed to keep the sidebar interface clean (such as (a)). Mousing over each snippet
in the table will only show the exact content that an author captured by default (c), the same as the original Unakite
system, rather than the automatically captured context snapshots. Only after a user activates some groups in the
Strata sidebar (by clicking on their titles) will the corresponding additional metadata appear on the snippets in the
table, as shown in Figure 6.1.

6.3.4 Summary
We found that when evaluating the appropriateness to reuse a piece of knowledge, one should
not only assess its trustworthiness (as the majority of the prior research has focused on), but
also check for its context and thoroughness. However, no previous system has made signifi-
cant attempts to address developers’ specific information needs with regard to all three of these
facets, or to extract appropriateness properties from the original content and present them to the
consumer of the knowledge to facilitate reuse. In addition, this process should not put much bur-
den on either the author or the consumer [177, 267] by requiring them to manually locate those
appropriateness properties, suggesting the need for largely automatic mechanisms.

6.4 Strata Design and Implementation
Based on the findings in our interviews and the framework, we built a prototype system called
Strata to visualize properties and signals of the appropriateness to reuse for the consumers of a
decision.

6.4.1 Core Design Process and Rationale
We first consulted the interview data and brainstormed the various signals and properties that
would theoretically address each of the information need listed in Table 6.1, column 2. Some
information needs can be directly addressed by obvious signals, such as surfacing the domain
names of the source web pages to consumers so that they know where the information in the
table were collected from and if those sources are credible. For information needs that would
require explicit effort from the table author to provide, such as the goal of a decision, we also
consulted prior literature as well as brainstormed about potential indirect signals that can be
used by consumers to infer those needs. For example, search queries are useful for inferring task
goals and contexts of an author [39, 198, 215, 247].
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In order to obtain these signals, we then built tracking techniques to automatically keep track
of the author’s activities in the browser while searching and browsing during the creation of a
Unakite table. Many of these tracking and extraction techniques use heuristics that are based on
the current design of websites that developers most often use, such as extracting the number of
up-votes for an answer on a Stack Overflow page. These are meant as a proof-of-concept, and
more elaborate and crowd-sourced extraction techniques could be added in the future.

We then set out to design a visualization that presents the consumers with these signals and
properties. During our exploration of the design space, we struggled with a fundamental tension
between consumers’ awareness of all the signals and consumers’ limited attention bandwidth. In
our initial prototypes, we placed all the signals (approximately 15) in a scrollable vertical list to the
left of the original Unakite table. Userswould also be able to hide a signal if it was not relevant. We
hoped to make the users aware of all the signals that Strata can provide and give them complete
freedom to explore them as they wish. Another rationale for this design was that users would
be able to use a combination of signals to fulfill a single information need, for example, both
the search queries and the pages visited will help indicate the author’s research process and
effort, as evidenced by the formative interviews. However, by implementing and testing these
design probes with a convenience sample of 8 developers, we realized that having “everything
all at once” can be overwhelming to the consumers, and they would prefer to just examine one
facet at a time and tune out the “noise” (signals that are irrelevant to the facet currently being
examined). In addition, we found that there was a disconnect between the signals we showed
in the list on the left and the actual content in the table on the right, causing consumers the
additional mental burden of trying to match them up. Showing the signals in context along with
the various information snippets in the table seemed to be a much better design to address this
problem.

These findings guided us towards a hierarchical visualization design of Strata’s consumer-
facing user interface: to structure these properties and guide the consumers through their eval-
uation process, we designed Strata as a sidebar to a Unakite table. Strata’s sidebar contains three
tabbed overview panels for the three facets in the aforementioned framework (Figure 6.1-a). Each
overview panel provides multiple groups (e.g., Figure 6.1-b,c,d) of appropriateness properties to
directly address consumers’ information needs as summarized in the framework. In addition, by
activating one or more of the groups (by clicking on their titles in the sidebar), consumers will
be able to view additional information specific to each snippet in the table. For example, Figure
6.2 shows a state where none of the groups are activated. After activating the Domains group
and Evidence Snippets group, consumers will be able to see for each snippet: where it originated
(Figure 6.1-g1), how popular it is (Figure 6.1-g2,3), and how old it is (Figure 6.1-g4). This is de-
signed to provide consumers with a high-level overview of each of the facets of reuse as well as
the ability to dive into the parts of interest, as recommended by Shneiderman [249]. It is also
inspired by the lens interaction [41, 60] where the same table content is addressed from three
different perspectives.

Like Unakite, Strata consists of an extension to the Chrome Web browser and a web ap-
plication. Strata’s Chrome extension implements the aforementioned new tracking techniques
on top of the Unakite Chrome extension. The Strata web application is implemented in HTML,
JavaScript, and CSS, using the React JavaScript library [86] as the primary frontend UI develop-
ment framework and Google’s Firebase on the Google Cloud for data management and synchro-
nization as well as user authentication.
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Figure 6.3: Strata’s Context panel. Consumers are able to check the search queries (a) that the author used to
understand his or her goal, examine the languages, frameworks, platforms, and their versions of the snippets (b, d1),
and view the surroundings of a snippet through the automatically captured context snapshots (e1).

We now discuss how the different features in Strata support the three facets listed in the
previous framework, and how they are implemented.

6.4.2 Context
6.4.2.1 Capturing goals with search queries

First of all, Strata automatically keeps track of authors’ search queries used in Unakite tasks as
well as the duration of time they spent on each and the number of information snippets they
collected. The duration information is approximated by comparing the timestamp when the next
query is issued to that of the current one. It also automatically leaves out any idle time (i.e., time
where there is no activities detected in the browser, by monitoring mouse movements, keyboard
input, etc.) that are longer than a certain threshold to make the duration approximation more
accurate. The idle thresholdwas empirically tuned to be 8 seconds based on data obtained through
pilot testing, and can be flexibly adjusted in the future. For consumers, Strata visualizes these
search queries as a list (Figure 6.3-a) to help consumers understand the goals of the task author.
They can use the sorting mechanisms at the top (Figure 6.3-a1) to sort the search queries by
chronological order, by duration, or by the number of information snippets yielded from each
(which is the default sorting order, where ties are broken by ascending chronological order).

There are several advantages of using search queries as a representation of an author’s goals.
First, they are direct translations of what an author thinks and intends to do to satisfy their
information need [237] — for example, issuing the query “numpy matrix vs list” implies that the
author would like to find out the differences between the two options. Second, unlike the original
Unakite where an author sets the single task goal (as the name of a task) at the beginning, keeping
track of all of the search queries (in temporal order) captures not only the author’s original goal
(which usually is the first query based on pilot study data) but also the evolving nature of the
goal (as identified in the formative interviews). Third, the number of snippets yielded from each
query serves as an approximation of an author’s effort spent on that particular part of the task,
which informs consumers of the author’s focus throughout the decision making process.
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6.4.2.2 Contextualizing information with automatic context snapshots

To help consumers contextualize and understand the meanings of options, criteria, and evidence
in Unakite (identified as one of participants’ frustrations), Strata introduces the idea of automati-
cally keeping a snapshot of the surroundings of a piece of content called context snapshot (inspired
by [132]) as an author collects information snippets. Strata uses Unakite’s snapshot feature, where
website content can be captured and preserved with its original styling, including the rich, in-
teractive multimedia objects supported by HTML. The bounds of the surroundings are by default
defined as the main content (Strata automatically tries to exclude any advertisements and other
forms of injected content on a website) in the visible area of a web page in the browser window.
In addition, due to the popularity and importance of Stack Overflow in the domain of program-
ming, we specifically optimized this feature to include not only the particular answer block an
author collects information from but also the original question block regardless of whether they
are within the bounds, which provides consumers with extra context information. Similar opti-
mizations for other popular developer sites, such as the official documentation, could be added
in the future. On the consumer side, by clicking on the title of the Snippet Surroundings group
(Figure 6.3-c) in the Strata sidebar, consumers will be able to view and scroll through the sur-
roundings for each snippet (Figure 6.3-e1), with the content that the author specifically collected
highlighted in yellow (Figure 6.3-e2).

This feature offers several benefits to both the authors and the consumers. The surrounding
of a snippet is highly likely to include explicit explanations (such as screenshots, code examples,
and execution results) that can help consumers understand exactly what a snippet means. For
example, the Python Lists VS Numpy Arrays article [17] where a criterion snippet “more efficient”
was scooped from, also gives examples of how the two data structures allocate memory blocks
under the hood, suggesting that the author actually meant “morememory efficient” rather than
“more time efficient”. Unlike in Unakite, where an author needs to specifically include that entire
paragraph when creating a snippet and then manually change the title of the snippet into “more
memory efficient” (which may disrupt the workflow), Strata will automatically capture that help-
ful paragraph into the snippet’s context snapshot. During the evaluation of context, consumers
will be able to directly view a snippet in its surroundings through its context snapshot without
frequent switches to the corresponding original web page to find where the content where the
snippet was taken from (which is exactlywhat participants reported doing in the formative study).

6.4.2.3 Detecting languages, frameworks, and their versions

Strata tries to automatically detect the languages, frameworks, platforms, and their versions used
in the snippets to directly address consumers’ information needs. To ground this feature, we
picked the top 10 of each of themost popular languages, frameworks, and platforms from the 2020
StackOverflow developer survey [18] and built detectors for them. The detectors for a language (or
a framework, platform, etc.) is implemented as a set of manually devised keywords (e.g., language
statements, special variables, file extensions, etc.) that can uniquely identify the usage or presence
of that language. For example, “es7”, “console.log”, “setTimeout”, etc. can be used to identify
JavaScript, and “useState”, “componentDidMount”, “findDOMNode”, etc. and be used to identify
the React library. Keywords that can cause ambiguities are specifically avoided, such as “$” (the
dollar sign) is simultaneously a way to refer to variables in PHP and a shortcut for jQuery. Strata
then automatically tries to find these detectors through optimized string matching in a snippet
upon its collection. If there is no hit within the snippet content, Strata will make a second attempt
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Figure 6.4: The trusted domains whitelist. Consumers can remove (a1) or add (a2) a certain domain from the list.

with the content of the snippet’s parent web page. Subsequently, Strata uses regular expressions
to find version numbers in the vicinity of detected languages, frameworks, and platforms (e.g.,
“Angular 9”, “Python 3.5”, “React 16.13.1”, etc.) or in the web page’s URL (e.g., Java SDK
version numbers are encoded in the URL of its official documentation website). In an informal
evaluation using materials containing only the currently supported languages, this mechanism
was able to successfully extract language information 100% of the time and correctly identify the
version information 96% of the time. In the future, one might imagine Strata pulling detectors
from open-source detector repositories built, verified, and maintained by the community, which
can improve their quality, precision, and recall, or at the very least, letting authors add or correct
wrongly detected versions. On the consumer side, this detected information is then presented
directly on the corresponding snippet cards in the table (Figure 6.3-d) as well as aggregated in
the Languages, Frameworks, and Platforms group (Figure 6.3-b).

Directly surfacing these version entries to consumers will help them quickly understand the
technologies used in the task as well as the specific versions each snippet uses at a glance, to
support comparing those with their own situation. For example, one developer would be easily
able to figure out that the example code collected by the other developer uses Python 2.7 and
therefore does not match with his or her own environment, which uses Python 3.5.

6.4.3 Trustworthiness
To help consumers evaluate the trustworthiness of a table, Strata provides visualizations of vari-
ous properties that directly address their information needs listed in the framework (e.g., source
credibility, information popularity, etc.). Prior work has suggested that surfacing issues or prob-
lems that could cause distrust is an effective way to alert and guide users’ attention during cred-
ibility evaluations [191]. Therefore, in addition to visualizing the trustworthiness properties, we
remind users of potential issues that could negatively impact a table’s trustworthiness by mark-
ing them with a red downward arrow (Figure 6.1-b2,c3,c4). The count of the number of issues
is shown in a colored badge on the top-right corner of the Trustworthiness panel (Figure 6.1-
a1), with one issue having a yellow color, and more than one issue having a red color (these
user-adjustable levels were empirically determined). Future development will explore more so-
phisticated weighting of the issues beyond counting them equally.
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6.4.3.1 Visualizing source credibility and diversity

As shown in Figure 6.1-b, Strata visualizes the distribution of the snippets across different do-
mains (websites) (Figure 6.1-b5), giving consumers a high-level overview of the provenance of
the information in the table. In addition, each snippet in the table is also marked with its domain
(Figure 6.1-g1), giving consumers a detailed understanding of where each snippet originated.

Strata also alerts consumers of potential untrusted domains by checking the presence of each
domain on a user-defined trusted domains whitelist, and flags the ones that are not on the list.
For example, a consumer will be able to immediately notice that one of the websites that the
author used to collect evidence, techgeekbuzz.com, is not on his or her own trusted domains
whitelist (Figure 6.1-b2). Currently, the default whitelist was generated by mining and aggregat-
ing the websites that 5 full-stack developers (who work for different technology companies and
routinely use a variety of languages and technology stacks) visited from their browsing history.
We then had them each annotate the websites as either “credible” or “not credible”, and removed
the ones that they did not all agree upon. This resulted in 25 domains that are considered “credi-
ble”, including community Q&A sites like stackoverflow.com, official documentation sites like
angular.io, and blog sites like medium.com. Domains that sometimes contain non-objective
and low-quality information are rejected, such as reddit.com. We by no means claim this is
complete nor that it applies to everybody — instead, it serves as a starting point and the con-
sumers are able to add and remove items themselves (Figure 6.4-a1,a2). They can also use the
“add as trusted” button (Figure 6.1-b3) to add a flagged website to the whitelist so that any future
information originating from that website will not be considered as an issue. In the future, one
can imagine taking advantage of a larger consumer base and automatically marking websites as
trusted if a majority of the consumers have it on their whitelist. We also expect to periodically
update the default whitelist over time, as new programming technologies are created and become
popular in the future.

To help with the evaluation of source diversity, Strata also alerts consumers when there is only
limited sources used to construct a table. Currently, Strata considers that there is an issue in terms
of source diversity if all of the information comes from one single source (reported by participants
in the formative studies as the worst scenario). If that is the case, the green upward arrow for
source diversity in Figure 6.1-b4 will become a red downward arrow, reminding consumers that it
is an issue. However, this threshold can be set by individual consumers, which would then apply
to all future table evaluations they perform. Similar to source credibility issues, this can also be
resolved or dismissed by individual consumers if they do not think it is problematic.

6.4.3.2 Examining evidence trustworthiness

Consumers will be able to get information about the popularity, up-to-dateness, and the consis-
tencies of the evidence by activating the Evidence Snippets group (Figure 6.1-c).

Each snippet in the table will be marked with signals showing its popularity depending on
the websites and pages that it originates from. For example, if a snippet is collected from a Stack
Overflow answer post, Strata will automatically extract and show the up-vote number of that
post (Figure 6.1-g2) as well as if that answer is the officially accepted answer (Figure 6.1-g3). If a
snippet is collected from a Medium.com article, Strata will show the number of claps that article
had at the time of collection. We designed this feature to closely fit developers’ current ways
of evaluating popularity, as reported in the formative studies. Strata will also display an alert in
the Evidence Snippets group if some of the snippets in the table have particularly low popularity,
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such as down-votes on Stack Overflow. As with the other kinds of detectors, we envision these
being augmented over time based on where developers are mostly getting their information from.

Unlike the original Unakite, which only showed when information was collected (reported as
“not exactly helpful” by participants in the formative interviews), each snippet in the table will be
marked by Stratawith the timestamp ofwhen its parentwebpage (or answer post if it is from Stack
Overflow) was last updated (Figure 6.1-g4). Strata uses a combination of techniques to extract the
last updated timestamp information, including using regular expressions to look for date strings
in website source code and taking advantage of the JavaScript document.lastModified variable
(only when the website is static). This serves as a direct measurement of the age of information,
and gives consumers an idea of how old the information is. Our study participants alsomentioned
that they often had trouble quickly locating when articles or blogs are updated online as these
timestamps are often displayed in less salient font styles or not visible at all. In addition, Stratawill
flag snippets that are older than 3 years as a potential issue in the Evidence Snippets group (Figure
6.1-c3), which, similar to other issues, can be manually adjusted or dismissed by the consumer.

Finally, Strata provides initial support for information consistency by informing consumers
if there are corroborating or conflicting evidence snippets in a table cell (e.g., there are simulta-
neously both thumbs-up and thumbs-down ratings for “numpy ndarray” causing “less memory
wastage or shortage”) (Figure 6.1-c4). The culprit table cells with conflicting evidence will be
highlighted by mousing over the issue in the Evidence Snippets group, addressing concerns from
participants in the formative studies about how such contradictions could be overlooked once a
table gets larger with more evidence ratings.

6.4.3.3 Surfacing properties about author credibility

Strata provides consumers with help in evaluating author credibility by allowing authors to man-
ually provide information about themselves. In the current implementation, a table author can
input a link to their GitHub profile, and Strata will automatically present the author’s name,
numbers of stars on the most popular code repositories he or she owns, most used programming
languages, affiliation, and a link to his or her GitHub profile page in the Task Author group (Fig-
ure 6.1-d). We opted to let authors voluntarily provide this information in order to give them
the option to protect their privacy and identity. In the future, we will work on mechanisms to
automatically perform author modeling in a privacy-preserving way — one idea is to analyze the
topics of Stack Overflow questions and coding forums that an author frequently visits to infer
his or her expertise. We will also provide an option for authors to provide certain information to
consumers anonymously.

6.4.4 Thoroughness
6.4.4.1 Understanding the research process

In order to provide consumers with a clear understanding of an author’s research and exploration
process, Strata automatically keeps track of several of the author’s activities in the background
— in addition to the search query tracking discussed earlier, Strata also automatically records the
web pages visited, aswell as the time spent, progressmade (approximated by tracking the percent-
age of a page that has been scrolled into the visible viewport using JavaScript’s window.onscroll
event), and the number of information snippets collected on each of the web pages.

69



CHAPTER 6. STRATA: EVALUATING AND REUSING SUMMARIZED KNOWLEDGE

Thoroughness Panel continued
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Figure 6.5: Strata’sThoroughness panel. Consumers are able to understand the author’s research process (a) with the
help of the timeline view (b) (a lighter violet means older chronologically), check commonly searched for alternatives
to the existing options (d, f1, f2, f3), and check the code examples in the snippets (e).

With these activity data, Strata computes the duration of time the author spent working on a
task, the length of time since the task was last updated by the author, and the numbers of options,
criteria, and evidence snippets that the author collected (Figure 6.5-a1).

In addition, Strata visualizes the activity information on a timeline view (Figure 6.5-b), which
provides an integrated chronological representation of the author’s entire research and explo-
ration process during a task. The timeline view is organized with two levels of hierarchies: first
by the search queries, and then by the pages that are visited during a particular search. The time-
line view is color-coded by different shades of a violet color, with increasing intensity indicating
the chronological order (a lighter violet means older). The same color scheme is also applied
to the background of the table cells (Figure 6.5-c) when the Research Process group is activated.
The timeline view is also interactive, mousing over a search query or a page will highlight its
corresponding information snippets in the table, together with the colored background, giving
consumers an understanding of how the table was constructed chronologically.

6.4.4.2 Suggesting alternatives

Another way for Strata to help with the thoroughness evaluation is to provide consumers with
commonly searched for alternatives to each option (Figure 6.5-f1,f2,f3). For every option in the
table, Strata will automatically obtain the potential alternatives to that option by making Google
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search queries in the form of “[option_name] vs” or “[option_name] versus” and obtaining a list
of top 10 auto-complete candidates using the Google Autocomplete API. This will then be trans-
formed into the alternatives list for the corresponding option by extracting and cleaning the part
after “vs” or “versus” for each auto-complete candidate, followed by aggregating and removing
duplicates. The results are presented in theCommonly Searched for Alternatives group (Figure 6.5-
d). These alternative lists are generated on the spot every time a table is being reviewed, making
sure that Strata always presents the latest information.

This approach offers several benefits to the consumers of the table. First, it offers insights into
the popularity of the existing options in the table — if an option (such as “React”) appears in all
other options’ alternatives lists (such as for “Angular” and “Vue”), it suggests that this option has
a high popularity. Second, it provides consumers with an understanding of the coverage of the
author’s research process as well as guidance on potential new opportunities to explore next — if
an item (such as “pandas dataframe” in Figure 6.5-d) frequently appears in the existing options’
alternatives lists (and therefore will rank higher in the aggregated list in the Commonly Searched
for Alternatives group), it suggests that this item might have been overlooked by the author
initially, or it might not have been available back when the table was made, and the consumers
can focus their investigative effort on it next before deciding whether to reuse this table. This
feature could help authors as well, offering real-time reminders of the coverage of their research
process and possible new options to consider as they are making decisions.

6.4.4.3 Presenting usable artifacts

Finally, Strata automatically detects and extracts any code examples included in the collected
snippets and presents them in theCode Examples group under theThoroughness panel (Figure 6.5-
e). This provides consumers the opportunity to directly examine and try out any code examples
involved first without diving deeper into the table. In addition, when the Code Examples group is
activated, a “contains code examples” badge (Figure 6.5-g1,g2) will appear on snippets that contain
code examples, helping consumers quickly locate potential code examples for a particular option
or criterion in the table.

6.5 Evaluation
We conducted a lab study to evaluate the effectiveness of the framework and the prototype Strata
system in helping developers evaluate the appropriateness of reusing decisions.

6.5.1 Experiment Design
6.5.1.1 Participants

We recruited 20 participants (13 male, 7 female) aged 22-37 (µ = 26.95, σ = 3.81) years old
through emails and social media. The participants were required to be 18 or older, fluent in
English, and experienced in programming. Participants on average had 8.3 (σ = 3.3) years of
programming experience, with 11 of them currently working or having worked as a professional
developer and the rest having programming experience in universities.
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6.5.1.2 Procedure

Participants were presented with 3 tasks in random order. The topics of the tasks were: (a)
choosing a python data structure to represent matrix-like data (referred to as Python from here on),
(b) choosing a deep learning framework to build neural networks (referred to as Deep from here
on), and (c) choosing a cloud computing service to build a video-streaming application (referred to
as Cloud from here on). For each task, participants were told what to pretend their background
and context was, and they needed to read a table and answer questions about: (1) how much do
they think the table is relevant to their given background and context; (2) how much do they
trust the content of the table; and (3) to what extent do they think the research effort put into
making the table is thorough. Participants were required to list out specific reasons to justify
their evaluations.

The study was a between-subjects design, where participants were randomly assigned to ei-
ther the Strata condition or the Unakite (control) condition. In the Strata condition, participants
had full access to all the Strata features described above (along with the table produced by Un-
akite), while in the Unakite condition, these new features were turned off, so the participants
saw only the table, and snippets in the table only showed their titles, contents, timestamps of
collection, and links to their original web pages. We imposed a 10-minute limit per task to keep
participants from getting caught up in one of the tasks. However, participants were instructed to
inform the researcher when they thought they had finished the task or felt like they could make
no further progress.

We chose Unakite as the control condition as opposed to raw (and textual) comparison tables
online to make sure both conditions had a similar user interface to work with. It also makes the
comparison between conditions more realistic — since the original Unakite is already keeping
track of where snippets are collected, participants in the Unakite condition would have the ability
to go back to the source to examine the appropriateness signals (such as up-vote numbers, last-
updated timestamp, etc.) if they wanted to.

Each study session started by obtaining the proper consent and having the participant fill
out a demographic survey. Participants in the Unakite condition were given a 10-minute tutorial
showcasing the various features of the Unakite web application as well as a practice task on the
topic of “choosing a JavaScript frontend framework” before starting. Those in the Strata condition
were given a same-length tutorial as well as the same practice task but in Strata instead. At the
end of the study, the participant was invited to fill out a questionnaire focusing on the experience
of using either Strata or Unakite. We asked questions on the usability of the system they used in
their respective conditions, the usefulness of such tables generated by the system, their opinions
of the different features of the system, their willingness to author tables using the system to keep
track of their decisions, their concerns about privacy if they were to author tables, as well as their
familiarity with the topic of the three tasks used in the study. Finally, we ended the session with
an informal interview on any additional thoughts they had about the system they used. Each
study session took about 60 minutes per participant and was done remotely using the Zoom
video-conferencing application. All participants were compensated $15 for their time.

6.5.2 Quantitative Results
All participants were able to complete all of the tasks in both conditions, and none of them went
over the pre-imposed time limit.
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Time nTotal nValid for
Context

nValid for
Trustworthiness

nValid for
Thoroughness

nValid nHighQuality Precision Recall

Unakite 484.2 (37.8)* 5.20 (0.92)* 1.50 (0.53) 1.30 (0.48)* 1.20 (0.42)* 4.00 (0.67)* 2.90 (0.57)* 55.7% (4.9%)* 24.2% (4.7%)*
Strata 328.2 (48.1)* 7.90 (1.91)* 1.50 (0.53) 3.20 (0.79)* 2.70 (0.82)* 7.40 (1.51)* 7.10 (1.45)* 90.1% (6.8%)* 59.2% (12.1%)*

(a) Python (nRef. HighQuality = 12)

Time nTotal nValid for
Context

nValid for
Trustworthiness

nValid for
Thoroughness

nValid nHighQuality Precision Recall

Unakite 393.4 (50.9)* 5.70 (1.06)* 1.70 (0.48) 1.60 (0.70)* 1.40 (0.52)* 4.70 (0.82)* 3.20 (0.92)* 56.1% (12.4%)* 29.1% (8.3%)*
Strata 276.2 (68.3)* 7.80 (1.87)* 1.70 (0.67) 3.00 (1.15)* 2.60 (0.70)* 7.30 (1.83)* 6.90 (1.97)* 88.1% (9.7%)* 64.5% (17.4%)*

(b) Deep (nRef. HighQuality = 11)

Time nTotal nValid for
Context

nValid for
Trustworthiness

nValid for
Thoroughness

nValid nHighQuality Precision Recall

Unakite 420.4 (58.9)* 6.20 (1.03)* 1.40 (0.51)* 1.90 (0.74)* 1.50 (0.53)* 4.80 (1.14)* 3.60 (0.97)* 58.5% (15.2%)* 30.0% (8.1%)*
Strata 271.8 (35.3)* 9.60 (2.37)* 2.60 (0.84)* 3.80 (0.92)* 2.60 (0.70)* 9.00 (2.00)* 7.90 (1.45)* 83.8% (8.5%)* 65.8% (12.1%)*

(c) Cloud (nRef. HighQuality = 12)

Table 6.2: Lab study results. The numbers of gold standard high quality reasons for each task, nRef. HighQuality, are
listed in their respective captions. We report the mean and standard deviation for: (1) the time in seconds taken
to finish a task; (2) the total number of reasons participants came up with, nTotal; (3) the number of valid reasons,
nValid; (4) the number of high quality reasons, nHighQuality; (5) the precision of high quality reasons, calculated
as nHighQuality/nTotal; (6) as well as the recall of high quality reasons, calculated as nHighQuality/nRef. HighQuality.
Statistically significant differences (p < 0.05) through t-tests are marked with an *.

The results show that the participants in the Strata condition took significantly less time to
finish compared to the Unakite condition for all three tasks, as shown in Table 6.2. Across all three
tasks, the average time for completion was reduced by 32.5% when using Strata (Mean = 292.1
seconds, σ = 56.9 seconds) compared to using Unakite (Mean = 432.7 seconds, σ = 61.8 seconds),
which is also statistically significantly (p < 0.05). Thus, using Strata did help participants evaluate
the appropriateness for reuse faster.

To assess the quality of the reasons that participants came up with, before the study, two
professional developers who are not affiliated with the research each generated a list of high
quality reasons for all three tables independently. After resolving conflicts through discussions
between the two developers, we produced a list of high-quality reasons for each table as the
“gold standard”. We then calculated and report in Table 6.2 the numbers of high quality reasons
participants identified that are on the “gold standard” list, as well as the precision (calculated as
nHighQuality/nTotal) and recall (calculated as nHighQuality/nRef. HighQuality) of high-quality rea-
sons (where nTotal is the total number of reasons they generated, and nRef. HighQuality is the
number of “gold standard” high-quality reasons for each task). By plotting the precisions and
recalls in Figure 6.6, we can see that participants in the Strata condition achieved higher pre-
cision in all three tasks, that is, they gave a higher percentage of high-quality reasons in their
responses compared to the Unakite condition. Participants in the Strata condition also achieved
higher recall in all three tasks, that is, they were able to find more high-quality reasons compared
to the Unakite condition. Thus, using Strata did help participants improve the quality of their
evaluations compared to using Unakite.

In case participants came up with valid answers we had not thought of, after the study, we
asked the same two developers as above to rate each reason that participants gave as either valid
or not valid blind to the conditions. Valid reasons are considered as the ones that are specific
and correct according to the content of the table. After resolving conflicts through discussions
between the two developers, we filtered out the reasons that are considered invalid, and presented
the resulting numbers of valid reasons in Table 6.2 (the numbers of invalid reasons were negligible
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(a) Precision of high quality reasons (nHighQuality/nTotal.) (b) Recall of high quality reasons (nHighQuality/nRef. HighQuality.)

Figure 6.6: Precisions and recalls of high quality answers in all three tasks. All results are statistically significant
under t-tests (p < 0.05).

and were therefore not included in the table). Across all three tasks, the average total number of
valid reasons (nValid) increased by 75.6% when using Strata (Mean = 7.90, σ = 1.90) compared to
using Unakite (Mean = 4.50, σ = 0.94), which is also statistically significant (p < 0.05). Thus, using
Strata appeared to help participants come up with more valid evaluations for appropriateness for
reuse compared to Unakite alone.

In the survey, participants reported (in 7-point Likert scales) that they thought the interactions
with Strata were understandable and clear (Mean = 6.20, Median = 6.00, 95% CIs = [5.75, 6.46]),
they enjoyed Strata’s features (Mean = 6.00, Median = 6.00, 95% CIs = [5.45, 6.72]), and would
recommend Strata to friends and colleagues (Mean = 6.10, Median = 6.00, 95% CIs = [5.65, 6.35]).

6.5.3 Qualitative Results
6.5.3.1 Usability and usefulness of Strata’s features

Overall, participants appreciated the increased transparency and efficiency afforded by various
Strata features and highlighted the values of the appropriateness properties that we visualize,
arguing that “it helps me understand how a table was made step by step” (P10), “lets me know what
the author searched for, so if I don’t understand something, I can search again. Andmore importantly,
I can sort of know what the author didn’t look for, and sometimes that’ll become what I can do next”
(P4), “[the automatic context snapshot feature] saves me lots of time that I would otherwise spend
going to the source web pages and making sense of things, which could be a rabbit hole sometimes”
(P15), and “[allows me to] see on a high-level where stuff comes from and if there’s any source that
is potentially questionable” (P13). In addition, P8 reflected that Strata “serve(d) as a guidance for
things that I should pay attention to,” which underlines the value of our framework, and reminded
some participants of appropriateness properties that they would otherwise overlook, such as “I
never really thought about what the author(s) looked for or not, but now I think it’s actually quite
important, especially if they miss obvious things that an expert would never miss,” (P6) and “I realize
that I’m more of a grab-and-go kinda person and I don’t usually remember to check how many up-
votes a Stack Overflow answer gets or when it was last updated” (P17).

6.5.3.2 Authoring tables

Participants were also excited about authoring tables with Strata running, as it will automatically
extract and produce the sidebar on the left and the various signals in the table. They mentioned
that such “honest signals enhanced” (P10) tables would be particularly useful in situations such
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as code reviews (P6: “going through the three main aspects is like going through our usual quality
checklist, which makes sure that we’re not missing anything”) and project takeovers (P13: “if my
previous browsing sessions are captured by this, then I won’t need to make myself available again
and again if somebody else suddenly has a question that only I know the answer to, since I made it
in the first place—this table thing will almost be self-explanatory”).

6.5.3.3 Privacy concerns

Some participants shared their privacy concerns from an author’s perspective, mentioning that
certain types of metadata that could reveal their personal preferences and idiosyncrasies (e.g.,
the code that they used, the snippet surroundings, and their search queries) should be kept pri-
vate until they felt comfortable sharing. Indeed, prior work has pointed out that there may be
negative effects of surfacing certain types of information [83]. These findings identified new re-
search opportunities for (1) intelligent mechanisms that can automatically screen for and block
out information that should be kept private (e.g., similar to [168] or [140]) and (2) mixed-initiative
and interactive mechanisms [129] that collaborate with users to only preserve the information
that they are comfortable sharing (e.g., similar to [169]) without compromising the usability and
effectiveness of the system.

6.6 Discussion
Prior research on web credibility stressed the importance of trustworthiness measurement dur-
ing the evaluation of the appropriateness to reuse a previously created knowledge artifact [127].
However, as we found from literature on sensemaking handoff and our formative study, evaluat-
ing the appropriateness of reuse is much more than simply verifying the trustworthiness [127],
especially since the artifacts are often an author’s collection and synthesis of different individual
pieces of information from different sources and reflect the author’s opinion about the trade-offs
among multiple valid options [177]. As a result, in addition to understanding whether the con-
tent is trustworthy, consumers also need to understand if the original problem context when the
author created the artifact matches with the consumer’s [127, 187], and if the author’s research
process was thorough [79, 215]. One of the contributions that we make in this work is a frame-
work (Table 6.1) that summarizes the aforementioned three major facets, serving as a checklist
that guides consumers through their evaluation processes. Strata, which is an instantiation of
the framework, improves consumers’ abilities to evaluate these facets compared to using Unakite
alone, as evidenced by both the quantitative (i.e., number of valid reasons given by the participants
in terms of each facet) and qualitative results (e.g., participants’ comments on Strata reminding
them of double checking appropriateness properties that they would otherwise overlook).

Although prior work on trust and sensemaking handoff offers insights into the various as-
pects and properties that are important for evaluating the appropriateness of reuse, it remained
costly and difficult for not only the author who was creating the knowledge to also keep track
of those signals and save them somewhere (since it is extra work without immediate benefit),
but also for the consumer who was interpreting the knowledge to deduce and speculate about
those signals. Through our research, we learned that an reasonable number of appropriateness
signals can automatically be captured at authoring time as well as processed and visualized to
the consumers subsequently to help with the reuse evaluation, and thereby reduce the cost for
people to build on each other’s knowledge artifacts.
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6.7 Limitations and Risks
There are certain types of information that Strata is not able to automatically obtain and visualize.
One set of limitations results from Strata working in the browser, so it cannot monitor activities
which happen in the authors’ code editors or IDEs, command line interfaces, and relevant discus-
sions with friends and colleagues (communicated either verbally or electronically through chat
applications like Slack). Further development of extensions in these different environments as
well as research into how to coordinate the collection and organization of this information would
be needed in order to provide consumers with a more complete picture of an authors’ working
context beyond the browser. However, even in situations where Strata cannot automatically cal-
culate a signal, we believe that the threemajor facets still alert consumers that these are important
aspects to be considered. Also, to the extent that consumers come up with their own measure-
ments and ways to fulfill their information needs, they are perfectly welcome to do so, such as
testing if a piece of sample code returns the desired result by running it in a terminal, which the
current Strata does not automatically do.

Some of the features in Strata are currently implemented based on heuristics, such as the
bounds of the automatic context snapshots and the threshold beyond which information is con-
sidered out-of-date. These heuristics are based on our preliminary piloting through limited iter-
ations, and may not apply universally to every situation. Further development can make these
features more universally applicable and more adaptive to different situations so that users will
be able to rely more on the judgements that Strata automatically generates.

The current design of Strata is intended for use cases where people collaborate and commu-
nicate their knowledge artifacts with each other in good faith; for example, software engineers
sharing design rationale within a team. However, for Strata to be used at scale with potentially
malicious actors, such as in situations where some authors might try to increase the trustwor-
thiness and thoroughness scores by manipulating the different metrics that it uses and displays,
additional signals as well as mitigation techniques might be needed to combat such gaming be-
haviors. One approach would be to aggregate multiple knowledge artifacts with similar context
(options, criteria, and goals in the case of Unakite comparison tables) together and detect and
filter out anomalous components, inspired by mechanisms like “down-voting” that community
Q&A sites (e.g., Stack Overflow) use to guard against incorrect and malicious answers at scale.
Further, some of the information, like the context, seems difficult and pointless to distort.

One of the concerns that repeated during our iterative design process is that each surfaced
appropriateness property ultimately competes for user attention and takes time for the reader
to process [149], which could result in the overall user interface being overwhelming. The cur-
rent solution we employed, inspired by prior work in recursive summarization and sensemak-
ing [286,287], takes a hierarchical approach that presents users with an overview and the ability
to dive into specific details, letting them take the initiative of exploring parts relevant to their
own interests. Future research is needed to untangle the relative importance of the various fac-
tors and how they can be alternatively represented. One idea is to gather large amounts of usage
data from a field deployment and develop statistical or machine learning-based models that can
predict importance metrics given various input parameters.
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Chapter 7

Proposed Work

7.1 Introduction
In our work thus far, we have designed and developed various mechanisms, interfaces, and tech-
niques to better support users in collecting and structuring information while searching and
browsing with little added cognitive or physical effort beyond what they would normally engage
in. The results were promising – not only the individual techniques were shown to be useful
and effective through a series of user studies, but the amassed information and knowledge in the
tabular structure afforded by Unakite also proved to be helpful for subsequent people who may
need to consume and reuse it.

Building on the foundation laid out by my existing work, I further recognize that the dynamic
and evolving nature of sensemaking – particularly in the early stages – means that users often
would avoid committing to a particular structure or doing any type of structuring at all. For
example, both the Unakite participants as well as those from prior work (such as [204]) have
expressed that, to some extent, organizing everything into a single type of structure (such as a
table or decision tree) felt too rigid and constraining for the iterative and incremental process
that they naturally use for sensemaking when investigating what decision to make.

Indeed, prior research [148] suggested that the asking users to structure information too early
might lead to a more poorly structured information space. In addition, the knowledge structures
that people created often become obsolete and new structures often emerge as their mental rep-
resentations evolve over the course of their investigation (such as realizing a particular criterion
should be prioritized, which prompts an entirely different investigation of several new options,
etc.), with no single type of information structure likely to remain the most appropriate through-
out the whole sensemaking process [90, 119, 148]. As a result, people often would just try to
keep everything in their working memory, which, unfortunately, is not unlimited [43, 185, 229].
Continuing to do so may bring adverse effects, such as information overload [43] and loss of
focus [25, 151].

In my proposed work, I attempt to address this issue by exploring fluid tool scaffolding
thatwould incentivize users to freely externalize their thoughts, interests, and emergent
mental models at any time during sensemaking. Guided by prior research as well as the
findings and limitations of my existing work, I hypothesize that such an effective system should
support the following:
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1. fluid collection and organization techniques that would capture not only the infor-
mation itself, but also potential signals of users’ evolving mental models while foraging.
Examples of such signals include users’ perceived priority or valence of information that
were captured in Crystalline andWigglite, but the proposed system should also explore im-
plicit behavioral and process-level patterns, such as cross-referencing sources or initiating
new branches/threads of investigation.

2. flexible organizational structures beyond tables (e.g., topical threads, check lists, mind
maps, affinity clusters, etc.) that users can leverage to organize and transform the amassed
information to reflect their evolving mental models during different stages of sensemaking.
The system should attempt to bootstrap these structures, for example, by taking advantage
of the signals from the foraging phase, to lower the entry barrier and provide a scaffold for
users to iterate and improve on.

Similar to my previous work, I plan to evaluate the new systems through lab or field studies
with people solving their real-world problems. I elaborate my current state of thoughts and
planning in the following sections.

7.2 Proposed System Design

7.2.1 Fluid Information Collecting and Organizing
My existing work Crystalline and Wigglite has opened up two paths towards enabling fluid in-
formation collection and organization: 1) implicit foraging through automatically inferring user
interest from their behaviors and 2) explicit foraging through lightweight interaction techniques.
In my proposed system, I plan to further extend these approaches as they were proven useful and
effective in our evaluations.

7.2.1.1 Capturing Behavioral Signals

As reviewed in chapter 2, prior work has introduced many theories and models that try to char-
acterize the common themes and processes for sensemaking. However, a key challenge with
existing theories and models is that they tend to be too high level for our goals of identify-
ing and taking advantage of low-cost signals that are useful for foraging and later structur-
ing [71, 75, 99, 150, 195, 219, 234, 288]. Through the Crystalline system, I explored a small portion
of the design space for taking advantage of natural behavioral signals that people exhibit when
searching and browsing, which can be used to approximate the amount of attention or interest
users had towards different pieces of information.

Building on the direction of leveraging people’s natural behaviors while browsing, I plan to
explore in my proposed work signals from higher order behavioral patterns and sequences. We
have noticed in interviewswith developers choosingAPIs or consumersmaking product purchase
decisions that they often, for example, cross-reference sources that mention multiple options or
criteria (e.g., StackOverflow answers or Best X in 2021), short-list a small set of options from
them and put aside the other seemingly less competitive ones, deep-dive into the most promising
to learn about the contexts it is used in and howwell they match their own goals and background,
switch to a new branch of alternatives when they believe that they have sufficiently reduced the
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estimated uncertainty and potential value of the current branch, etc.. These are process-level
thoughts and behaviors that are currently overlooked by foraging support tools, but could be the
kinds of useful meta-information about a user’s sensemaking process that is helpful downstream
(for both the later structuring and the adaption and reuse of that structure by subsequent users).

My goal is to first developways to intelligently and automatically detect and capture these sig-
nals through observing and understanding higher order patterns and sequences in users’ sense-
making behavior, such as closing a series of tabs in a row when they have decided to discard
an entire branch of alternatives, backtracking or creating new branches when they encounter
particularly promising or deal-breaking information, and even minute signals of their judgments
as they browse like micro-scrolling or mouse movement patterns when they encounter new or
unexpected information that prompts additional cognitive processing [236]. The system can then
act accordingly by intelligently keeping track of, prioritizing, or archiving information on behalf
of the user. And like Unakite and Crystalline, users can view and edit these changes and updates
in an always-available sidebar at any given point of time during their sensemaking process. The
edits should be further leveraged to recalibrate system behaviors.

7.2.1.2 Leveraging Lightweight Interactions

I will also explore novel lightweight explicit interactions in addition to taking advantage of the
signals from people’s browsing behaviors. The intuition here is that there is an relatively under-
explored design space for interactions that are not yet part of a user’s natural browsing process but
could become so with very little added physical or cognitive demand, and could, in the meantime,
provide rich signals of a user’s current attention, interests, and mental models.

My existing work on Wigglite has specifically looked at the “wiggling” interaction technique
that combines the selection, collection, and optional triaging of interested content in a single
coherent gesture. In my proposed system, I would like to explore another low-cost interaction
technique for quickly consuming and triaging large amounts of content – users can enter a “grab-
ber” mode in which they would use normal clicking (or right-click, double-click, press) on desired
content and save them into an information repository (similar to what Unakite supports, see sec-
tion 3.3.2.2). The key idea here is that users do not have to learn and get into the habit of exe-
cuting a new type of interaction (which prevents adoption [146]), but can use interactions that
they already perform frequently and are familiar with, which lowers the entry barrier and im-
proves speed and efficiency. In addition, as reported by prior research [134], it is often the case
that users’ mouse cursor follow their eye gaze when they read and process content on the web,
suggesting that little cross-screen cursor traversal is required for them to point and click on the
desired content. Furthermore, users can specify how the information should be annotated, clas-
sified, or organized by optionally interacting with an always-available sidebar after capturing,
which I elaborate in the next section.

7.2.2 Flexible Structuring
The key goal for the system at this stage is to provide representations and lightweight interac-
tions for users to bootstrap and evolve the structures of their foraged information. As mentioned
in the introduction, I would like to explore alternative knowledge organizational structures be-
yond tables to offer users a more flexible structuring experience. To achieve this, the system can
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leverage the rich signals of users’ evolving mental models during the foraging phase that was
discussed above and those introduced by my existing work. For example, a starting point would
be a sorted lists of important criteria, where each can be marked as to whether it is a deal-breaker
(if it does not have the appropriate value, then the option does not need to be further considered),
tradeoff (values in this criteria trade off with values in another, and the user must balance which
is more important), or informational (all the options are pretty much the same for this criteria,
so it turns out to not be a useful discriminator). Then, a table might be automatically created just
for the trade-offs.

I also propose to integrate other views, such as 1) a branch view that represents the major
branches/threads of research that users investigated and the key information that they learned
for each, 2) a cluster or kanban-board view that can be automatically bootstrapped and ordered
based on similarity, amount of attention given, or estimated level of user interest, and 3) a infinite
workspace view where information clips are by default clustered via content similarity [223]
and users can also freely position, regroup, annotate the individual clips and clusters. In the
meantime, the system should try to adapt the structures and views to the current sensemaking
context (such as prioritizing the branch and information related to that branch that users are
currently on), and provide flexible, interactive transitions among them.

Given the iterative nature of sensemaking, as users discover and extract new information,
I plan to research automatic ways to identify where in the structure the collected information
should go, such as identifying whether it is a new option, new criteria, evidence for an existing
option or criteria, or something else entirely (like product picture, code snippet, or tutorial useful
if this is chosen in the end). This will also alleviate the need to decide on the structure and do
all the setup up-front – users can begin with a simple default representation, such as a list, and
incrementally evolve into more structured views as needed.

Another key aspect of flexibility is to be able to easily discard, archive, or modify information
and structures if they are no longer considered relevant, useful, or accurate. This can be achieved
by letting users initiate via lightweight interactions similar to what was described above and
letting the system do the rest of the heavy-lifting. For example, users may decide that a criteria
is ultimately a deal-breaker, then the system can intelligently filter out the victim options based
on this new insight.

7.3 System Implementation
I plan to primarily support sensemaking activities on desktop, specifically in a web browser.
Like my previous systems, I envision the new system as a browser extension. I also plan to
leverage the Skeema platform that was discussed in section 5.3.1 – Skeema provides mechanisms
for users to collect their tabs into projects, extract the pieces of pages that they find useful, and
organize them into simple thread-based structures, thus providing a basic scaffold and also a
control condition for new features and interventions. In addition, Skeema already has a strong
user base of more than 2000 public users (as of November 2022), especially after the recent launch
on Product Hunt [255]. Based on informal survey results, large segments of the users are engaged
in programming and consumer decision making, the two domains that I focus on in this thesis.
Therefore, I consider Skeema an idea platform for me to iteratively design and build my proposed
work on and recruit future study participants to perform tasks in a more organic fashion.
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One notable addition I would like to add to Skeema is an always-available sidebar. The general
design of the sidebar will be similar to that of the Unakite and Crystalline system (see Figure 3.1
and 4.1), which serves both as a visualization and a canvas for people to quickly scan and organize
the knowledge they have gained so far. However, it should differ from Unakite and Crystalline
in that it provides a lot more ways for users to flexibly organize their collected information clips.
I expect to iterate on the specific design of this sidebar in the coming months.

7.4 Evaluation Plan
While I am still at an early stage of exploring the design space for this new sensemaking tool, I
plan to conduct a controlled lab study to evaluate its usability, usefulness, and effectiveness. I
would like to compare the tool to both using the original Skeema platform (which already boasts
significant improvements in terms of the ease of use and effectiveness when sensemaking) and
a more common baseline of using Google Doc to take notes and structure thoughts while sense-
making (the appropriateness of which has been discussed in detail in section 3.4.1.1).

I plan to obtain both quantitative and qualitative data from the study. Quantitative metrics
include but not limited to the overhead cost of using the tool (see section 3.4.1.2 and 4.5.1), the time
it takes for participants to finish tasks, the number of operations (such as collecting, organizing,
prioritizing, archiving, etc.) performed, the number of low-level actions (such as clicks, cross-
screen cursor movements, drags, scrollings, etc.) performed/saved, the number of iterations went
through to reach the final organizational structure, etc. Qualitative evidence can be gathered
through administering NASA TLX surveys, think-aloud transcripts (if applicable based on the
actual study design), and post-study semi-structured interviews.

I am particularly interested in the following research questions:
• Can people use the new system to collect and organize information and externalize their
thought processes when sensemaking?

• Does the system offer value over what people would normally do when reading through
and making sense of web content for decision making?

• Howmuch effort do people perceive that they have to put into to keep the external structure
up-to-date and reflective of their state of thinking at any given point in time?

• How can the design of the system be improved?
• What are some potential common characteristics of the structures that people externalize
depending on the nature of the tasks?

7.5 Timeline of Completion
My goal is to complete the dissertation by July 2023. My proposed schedule is shown below:

• December 12, 2022: Thesis Proposal
• December 2022 - April 2023: Design and build proposed system
• March 2023 - June 2023: Run lab studies of the proposed system
• January 2023 - June 2023: Job search
• June 2023 - Aug 2023: Thesis writing & defense
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Appendix A

Related Work for the Strata Framework
and System

A.1 Information and Knowledge Reuse
As formulated by Davenport et al. in 1996 [73] and Markus in 2001 [187], knowledge processes
are often categorized by whether they involve knowledge creation (e.g., research and development
of new products and services, or writing books or articles) or knowledge reuse (e.g., reapplying
existing components and best practices to solve common problems). While there is much research
into the significance and difficulties of knowledge creation and innovation [73, 113, 115, 147, 154,
205], the effective reuse of knowledge has been shown to be a more frequent strategy and concern
to individuals and organizations [73, 77, 187, 207, 209, 286, 287].

Many systems have been developed to support the multiple stages of information and knowl-
edge reuse as mapped out by Markus [187]: capturing and documenting knowledge, packaging and
distributing knowledge, and reusing knowledge. Among them, some systems support capturing,
organizing, and keeping track of information in the first place (e.g., [39, 114, 170, 171, 177, 269]),
some aim to deliver and surface existing knowledge directly to a user without the need of complex
matching and frequent context switches (e.g., [46,60,221]), and others facilitate the digesting and
understanding of knowledge (e.g., [175, 177, 258]). However, having a literal understanding of a
knowledge artifact does not by itself imply reuse — a major barrier to that knowledge actually
being useful is the consumer does not know whether it is appropriate to use it or not [187, 274].

Prior research provides insights into various properties that people look for in order to eval-
uate the appropriateness for reuse, such as source credibility [74,85,92,191,244,264], information
currency (or up-to-dateness) [24, 45, 191], information popularity [191, 244], goals and purposes
(what the author wanted to achieve) [216, 247], etc. However, much research such as the above
focuses on specific issues about the general credibility of web content, while knowledge artifacts
previously collected and synthesized by an author require many more types of judgements be-
yond credibility in order for a consumer to decide its appropriateness for reuse. To the best of our
knowledge, there remains no systematic models or frameworks for understanding the factors that
affect the judgements of the reuse of previously created knowledge artifacts. Such a framework
could be helpful for driving research studying and augmenting reuse across a variety of domains
and forms. In this thesis, we take a step towards such a framework, starting with knowledge
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artifacts in the form of comparison tables, which are widely used, and in the domain of program-
ming, where knowledge reuse happens frequently [46,112,121,131,153,159,177,221,254,254]. In
the following sections, we discuss three of the most relevant threads of research as they relate to
judgements of knowledge reuse.

A.2 Evaluating Online Information Credibility

A.2.1 Models and Heuristics for Evaluating Online Information Credi-
bility

One of the most researched facets of knowledge reuse is evaluating online information cred-
ibility [93, 191, 244, 273] (or “trustworthiness” [264]), which focuses on facets of authenticity,
reliability, and trustworthiness of a given piece of content online, ranging from e-commerce
transactions to online discussions and collaborations [149, 258, 263]. Prior work has employed
bottom-up approaches like surveys and contextual inquiries and reported various factors that
influence credibility assessment, including but not limited to: domain name and URL, presence
of date stamp showing information is current, author identification and indication of his or her
expertise, citations to scientific data or references, and user ratings and reviews [24, 45, 85, 92, 98,
190, 191, 193, 250, 264, 273].

In addition, models and heuristics for credibility assessment have also been proposed, for
example, the checklist model, which guides users through a checklist of critical factors during
assessment [191], and the contextual model, which emphasizes the use of external information
to establish credibility [190], such as promoting peer-reviewed resources and seeking corrobo-
rating or conflicting evidence. A summary by Metzger et al. [193] suggests that users routinely
invoke cognitive heuristics to evaluate the credibility of information and sources online, such as
the reputation heuristic (checking if the source of the information has good reputation and cre-
dentials), and the expectancy violation heuristic (checking if a website or its content conforms to
their original expectations).

However, in reality, it has repeatedly been shown that people are often underprepared and
have trouble determining how to evaluate the credibility of online information [29,190,192,240],
which is often deemed to be too much work [190,245], having a high possibility of missing impor-
tant details [191, 193], and eventually leading to abandonment, mistrust or misuse [174, 175, 191]
of the information. This reflects a significant gap between research and reality: while prior work
provides insights into the various factors affecting online information credibility andways people
reason about them, people need tool support that systematically helps with credibility assessment
and information reuse. We address this gap by providing a prototype system (the Strata system)
that (1) automatically extracts appropriateness signals (including those related to credibility) from
the original knowledge content when possible; and (2) processes and presents them to the con-
sumer of the knowledge in a hierarchical visualization that directly addresses their information
needs during the evaluation of the appropriateness to reuse.
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A.2.2 Support for Evaluating Collaboratively-built Knowledge Content
Collaborative knowledge building, exemplified by the Wikipedia project [7] and Stack Overflow
[6], has become highly popular in many domains, and its mutable nature that virtually anyone can
edit anything has invited considerable research into helping users evaluate the trustworthiness
of its content. For example, the revision histories [258, 271, 284, 285], review processes [272],
and the external references [93, 95] of an article can be modeled and visualized to help improve
transparency and the evaluation of its trustworthiness. In addition, an author’s past performance,
such as their editing history on Wikipedia or previously answered questions on Stack Overflow,
can be mined [23, 250] and surfaced [258] to help knowledge consumers determine the author’s
reputation, expertise, and other accountability metrics. Encouragingly, Kittur et al. [149] showed
that surfacing trust-relevant information fromWikipedia articles had a dramatic impact on users’
perceived trustworthiness of those articles, holding constant the content itself.

However, despite the overwhelming importance and increasing research effort, being con-
sidered trustworthy is often not the sufficient condition for reuse, nor is trustworthiness always
the first facet that users evaluate — research has shown that people often have trouble under-
standing a piece of information when it is taken out of its original context [177,187] and figuring
out if it is indeed relevant to their own situation [44, 238, 245] before they start to think about
trustworthiness and credibility. In addition, they also wonder about how much effort has been
put into creating a piece of knowledge and does it cover everything that they are interested
in [187, 215, 245, 247, 289] before they can give a final verdict on reusing it or not. Therefore, we
draw from and build upon these prior works, where we iterated to identify, extract, and surface
not only the important elements of trustworthiness but also context and thoroughness to help
consumers make a more comprehensive assessment of the appropriateness of reusing knowledge,
exemplified by decisions and their rationale in programming.

A.3 Sensemaking Handoff
Much research has explored the activity of sensemaking handoff, during which one individual
must continue the sensemaking work where another has left off. It frequently happens in asyn-
chronous collaborations [90, 215, 216, 289], shift changes [214], etc., during which the current
sensemaker (consumer) needs to make sense of and evaluate the appropriateness of reusing the
results generated by a previous sensemaker (author) [187, 245]. Various metadata and properties
parallel to the main artifacts of sensemaking have been proposed that would help the people with
this process, such as the awareness of the previous sensemaking process [79, 215] (e.g., search
queries and visited web pages), the level of expertise of the author [187, 247], and the context of
the original sensemaking problem [187].

However, it is both time and effort intensive for an author to keep track of their rationale
and processes with little immediate payoff, which is also often for the benefit of others rather
than themselves [177]. Even in situations where authors have the explicit wish to help, they are
often uncertain of what metadata and properties to provide and how those can be instantiated
using concrete signals that would be valuable to the consumers in evaluating the reusability of
their sensemaking results [245]. We address these barriers in the context of reusing decisions
in programming by iteratively developing a framework that summarizes the major facets that
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consumers care about during the evaluation of appropriateness to reuse along with the corre-
sponding detailed information signals, and a set of technical approaches that can automatically
extract, compute, and visualize them when possible. We integrated these into our Unakite sys-
tem [177] that helps authors organize and record their decisions for reuse, saving them the burden
of coming up with the appropriate signals to keep track of as well as potential extra effort needed
to accurately obtain them.

A.4 Knowledge Reuse in Programming
The practice of knowledge reuse has been particularly relevant in the software industry [112].
Code reuse, in particular, has become a hugely successful paradigm in the development of new
software products and services in both the commercial and open source sector. Developers
frequently use well-maintained functional code modules from code-sharing platforms such as
GitHub [2] and npm [4], enjoying the benefits of significantly reduced workload, improved pro-
ductivity, enhanced software performance, stability and security, and more time for innova-
tion [96, 97, 112, 139, 187, 196, 202, 254].

Despite the fact that software code is the most obvious target for reuse [112,196,254], knowl-
edge reuse in programming may go well beyond code, as stated by Barns and Bollinger [33]: “The
defining characteristic of good reuse is not the reuse of software per se, but the reuse of human
problem-solving.” Indeed, developers on community Q&A websites like Stack Overflow [6] share
not only code examples [46,221] but also decision making strategies, design rationale such as al-
ternative options, criteria or constraints that should be met, and the resulting trade-offs [131,177].
Furthermore, questions about design rationale are widely cited by developers as some of the
hardest to answer [159, 160, 252]. Tools like Unakite [177] can greatly reduce the costs to keep
track of and later understand such rationale knowledge, with the hope that such knowledge can
ultimately be better reused rather than be obtained from scratch requiring duplicated research
effort [112, 176]. In Strata, we further advance this research thread by developing features and
affordances enabling developers to evaluate the context, trustworthiness, and thoroughness of
previously-made decisions, which is arguably one of the missing links between understanding
and reuse.
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