
LLM Comparator: Interactive Analysis of Side-by-Side Evaluation of
Large Language Models

Minsuk Kahng, Ian Tenney, Mahima Pushkarna, Michael Xieyang Liu, James Wexler,
Emily Reif, Krystal Kallarackal, Minsuk Chang, Michael Terry, and Lucas Dixon

Fig. 1: LLM Comparator is a visual analytics tool designed to empower model developers and practitioners to investigate side-by-side
evaluations of large language models (LLMs). Users can compare and contrast the textual outputs generated by their LLM (Model A)
against a baseline (Model B). The interface consists of two main views: (1) an interactive table for examining individual prompts and
model responses, and (2) a visualization summary that facilitates the analysis of when (2-1) and why (2-2) one LLM outperforms or
underperforms the other and how (2-3) their responses differ.

Abstract—Evaluating large language models (LLMs) presents unique challenges. While automatic side-by-side evaluation, also
known as LLM-as-a-judge, has become a promising solution, model developers and researchers face difficulties with scalability and
interpretability when analyzing these evaluation outcomes. To address these challenges, we introduce LLM Comparator, a new visual
analytics tool designed for side-by-side evaluations of LLMs. This tool provides analytical workflows that help users understand when
and why one LLM outperforms or underperforms another, and how their responses differ. Through close collaboration with practitioners
developing LLMs at Google, we have iteratively designed, developed, and refined the tool. Qualitative feedback from these users
highlights that the tool facilitates in-depth analysis of individual examples while enabling users to visually overview and flexibly slice
data. This empowers users to identify undesirable patterns, formulate hypotheses about model behavior, and gain insights for model
improvement. LLM Comparator has been integrated into Google’s LLM evaluation platforms and open-sourced.

Index Terms—Visual analytics, large language models, model evaluation, responsible AI, machine learning interpretability.

1 INTRODUCTION

As large language models (LLMs) become increasingly central to many
applications, they are continually trained and fine-tuned to enhance the
performance. This process includes adjusting model parameters, modi-
fying training data, and altering training procedure. A key challenge in

• The authors are with Google Research (now with Google DeepMind).
E-mail: {kahng, iftenney, mahimap, lxieyang, jwexler, ereif, kallarackal,
minsukchang, michaelterry, ldixon}@google.com

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

this development cycle is effectively and confidently determining if the
updated model truly outperforms the baseline to justify its adoption.1

However, evaluating LLMs presents unique challenges. While tradi-
tional machine learning models are often compared against ground-truth
labels, LLMs generate lengthy, freeform text [18], making it difficult
to define a single “correct” response. Multiple valid answers can exist,
and obtaining them can be costly. Moreover, standard precision and

1This paper builds upon a preliminary manuscript presented by the authors
at CHI 2024 in the Late-Breaking Work (LBW) track, published in the Extended
Abstracts of CHI 2024 [30]. We have consulted with the Overall Paper Chairs
for VIS 2024 about this. We have added significant new content, including an
updated interface design, improved algorithms, new experiments, a new user
study, additional usage descriptions, and an expanded literature review.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

recall based metrics are inadequate for capturing nuanced differences
between these texts. As a result, a common approach involves having
humans to rate the quality of a model’s output for a given prompt and
compare it to a baseline [19, 47]. However, it does not scale to the
hundreds or thousands of prompts and several to dozens of models
involved in model development, as human evaluation is expensive.

To mitigate the challenges of the existing approaches to evaluating
LLMs, automatic side-by-side evaluation (a.k.a., LLM-as-a-judge [57],
AutoSxS [23]) has emerged as a promising solution. Instead of relying
on human raters, it leverages another LLM to compare the text outputs
from two different models. The prompt typically instructs the LLM
to determine which response is better in quality and may also ask it
to provide a justification for its choice in a few sentences. A major
advantage of this LLM-based evaluation approach over human ratings
is its scalability and cost. LLM developers can quickly run evaluations
without having to recruit human raters and pay for their time.

To gain a deeper understanding of how practitioners use automatic
side-by-side evaluation, we have had conversations with researchers
and engineers in several teams at Google. We discovered that while
aggregated scores from these automatic raters offer an assessment of
model performance conveniently as a single number, there is a strong
need for more detailed analysis. They particularly raise interpretability
and sensemaking challenges. For instance, they are eager to understand
why a model achieved a score of 54% of win rate and to identify the
types of examples where a model excels or struggles.

In this paper, we introduce LLM Comparator, a new interactive tool
that empowers practitioners to analyze side-by-side model evaluation
outcomes at scale. By integrating visual summaries with the ability
to examine individual examples, LLM Comparator empowers practi-
tioners to explore both quantitative and qualitative differences between
models. The tool’s visualization includes slice-level performances
(when the model performs better), rationale summaries (why it per-
forms better), and custom functions (how they differ). This interactive
workflow enables users to flexibly drill down into specific examples
within large datasets, helping them diagnose model behavior, identify
problematic responses, and gain insights for improving their training
datasets and model performance.

LLM Comparator has successfully been integrated into LLM eval-
uation pipelines for many teams at Google. In the first five months
following its release, the tool attracted more than 1,000 users and
supported the analysis of over 2,500 distinct side-by-side evaluations.
Based on extensive feedback from these users, we have iteratively
refined the design of the tool, which we detail in later sections. Fur-
thermore, LLM Comparator has been open-sourced2 and included in
Google’s Responsible Generative AI Toolkit.3

2 BACKGROUND: AUTOMATIC SIDE-BY-SIDE EVALUATION

In this section, we describe background information about automatic
side-by-side evaluation (i.e., LLM-as-a-judge [57], AutoSxS [23])
based on our observation of practitioners developing LLM at Google.
Automatic side-by-side evaluation is a widely adopted practice among
them. After tuning new LLMs, they employ this method to evaluate
the models before proceeding to more expensive human evaluations. A
pipeline comprises the following components:

Inputs AutoSxS primarily takes the following information as input:

• Test model: Developers can specify their newly tuned model.

• Baseline model: They can set a baseline model to compare to
the test model. They often select a currently-deployed model or
one that is known to perform well (e.g., PaLM 2 [3]).

• Prompt sets: A collection of available prompt sets, typically
ranging from a few hundreds to thousands, is available for selec-
tion. These were obtained from academic benchmarks, curated by
other teams, or inspired by usage logs from end users. Prompts are
often tagged with category names (e.g., email writing, coding).

2https://github.com/PAIR-code/llm-comparator
3https://ai.google.dev/responsible

Algorithm Given these inputs, the AutoSxS pipeline first obtains
responses from the test and baseline models for each of the prompts.
Then for each prompt, it asks another LLM (i.e., judge) to compare the
quality of these responses. The prompt for the judge LLM can be as
follows (slightly revised from Zheng et al. [57]). Please find the full
prompt in Appendix A1.

Act as a judge and evaluate the quality of the responses

provided by two AI assistants to the user question

below. You should choose one that follows the user’s

instructions and answers the user’s question better.

...

After providing your explanation , provide your final

rating in 7-point Likert scale ...

[User Question]: {question}

[Response A]: {response_from_model_a}

[Response B]: [response_from_model_b]

Outputs The AutoSxS pipeline returns the following information:

• Individual ratings with rationales: From the above prompt, the
judge LLM returns a Likert-scale rating (e.g., “A is much better,”
“B is slightly better”) along with a rationale. These Likert-scale
ratings are then converted into numeric scores (e.g., “A is much
better” corresponds to 1.5, “A is slightly better” corresponds to
0.5, “B is much better” corresponds to -1.5).

• Multiple ratings: The process is often repeated multiple times
for the following reasons. First, position bias is one of the known
issues of LLMs—whether to put the test model as A or B affects
the results [57]. Second, LLMs are commonly used in a non-
deterministic sampling mode, and so produce different results
each time [35, 57]. To counteract these issues, the library collects
multiple ratings for each prompt where a half of them is flipped.
The score for each prompt is then determined by calculating the
average of these repeated ratings.

• Aggregated metrics: The pipeline computes summary metrics
from the ratings across many prompts. The most commonly used
metrics are average scores and win rates. A win rate, commonly
used in human evaluations [47], is defined as the fraction of scaled
rating scores that are above or below a threshold (e.g., A wins if
score > 0.25; B wins if < -0.25; tie otherwise). The win rate of
50% indicates that the rater finds no difference.

3 USER CHALLENGES AND DESIGN GOALS

In this section, we discuss the current practice and challenges of using
automatic side-by-side evaluations and our design goals for building a
new tool for analyzing the evaluation outcomes.

We have conducted informal conversations with over 20 software
engineers and researchers across many teams at Google over time to
gain a deeper understanding of people’s needs. We identified them
through various channels: leveraging our network to find individuals
who actively perform model evaluation, recruiting from relevant mail-
ing groups, and reaching out to those who manage internal evaluation
platforms who provided valuable insights they had collected from their
users.

3.1 User Challenges in Analyzing Evaluation Results

We have identified common workflows among model developers and
researchers when analyzing automatic side-by-side evaluation results:

• There is a lack of specialized tools designed for analyzing evalua-
tion outcomes. When people wish to inspect individual examples,
they typically import the result file into spreadsheets [38], where
each row represents an input prompt and the columns include
the prompt, response A, response B, and the score. Some people
prefer using computational notebooks (e.g., Colab) for this task.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/PAIR-code/llm-comparator
https://ai.google.dev/responsible

Fig. 2: By clicking on the score column in the interactive table, users can inspect the details of individual ratings along with their rationales.

• Individuals dedicate time to eyeballing individual examples (i.e.,
prompts and model responses) to interpret evaluation results and
qualitatively assess the differences between two responses. By
reading through the responses, they can identify problematic text
and gain insights about the behavioral differences between the
models. To decide which examples to examine, they either make
random selections or sort the examples by score in spreadsheets
or other tools to focus on those with particularly high or low
scores. However, reading and comparing these long texts within
spreadsheets is difficult as they are not tailored for this task.

• Practitioners have a significant interest in calculating metrics like
average scores and win rates for different data slices (such as
prompt categories) to identify areas where the model performs
particularly well or poorly. They are interested in inspecting
examples within these slices, but the current process necessitates
juggling multiple tools.

• To conduct a more in-depth analysis, additional features can
be extracted from texts (e.g., token count). and these feature
values are then aggregated across examples. They can be used to
determine factors influencing model responses. This is typically
carried out by writing scripts in computational notebooks.

The above findings suggest that both detailed examination of individ-
ual examples and aggregated data analysis are crucial [41]. However,
existing tools do not effectively integrate these two types of analysis.

3.2 Design Goals
Based on the user challenges we discussed above, we set the follow-
ing design goals for creating tools for analyzing side-by-side LLM
evaluations:

DG1. Facilitate seamless interactions between aggregated data and
individual examples, allowing users to explore data subsets in
various ways and examine relevant examples.

DG2. Provide workflows to address key analytical questions:

2-1. When: Under what conditions does a model outperform
or underperform a baseline model?

2-2. Why: What are the common rationales used by automatic
raters? What factors lead to one model being preferred
over another?

2-3. How: In what ways do the responses between two models
differ? What qualitative patterns emerge, and how can
these insights inform improvements to datasets or models?

DG3. Scale the analysis of evaluation results to handle a large volume
of prompts and model responses, enabling users to confidently
identify the performance differences between models.

4 VISUALIZATION DESIGN AND DEVELOPMENT

This section presents LLM Comparator, an interactive tool for the side-
by-side comparison of LLMs. Figure 1 depicts the tool’s interface
consisting of two main views: (1) the interactive table for detailed
individual example inspection and (2) the visualization summary view
for visual overviews and filtering options in multiple ways. In Section
4.1, we describe the data used in Figure 1, and in Sections 4.2 and 4.3,
we describe the tool in details.

4.1 Data used in Example Figure

To prepare data for Figure 1, we leveraged the LMSys Chatbot Arena
Conversation dataset.4 This dataset contains 33,000 rows, where each
row represents a human user’s pairwise rating comparing responses
from two of 20 different LLMs for a given prompt. We chose a specific
model pair: oasst-pythia-12b and alpaca-13b, which appear to provide
similar quality of responses. This subset contains 371 examples. Next
we replaced the existing human ratings with automatic side-by-side
ratings. We use Google Cloud’s Generative AI APIs5 to compare the
quality of response pairs by using the prompt included in Appendix A1.
Each prompt was evaluated six times, with half being flipped, and the
results averaged for a final score.

To this end, the LLM Comparator interface takes a list of examples,
each consisting of the following fields:

• Input prompt
• Category tags for the input prompt6

• Response from Test Model (A)
• Response from Baseline Model (B)
• A set of individual ratings (i.e., 6 ratings)

– Likert scale text (e.g., “A is much better than B”)
– Transformed numeric score (e.g., 1.5)
– Is flipped or not (i.e., whether A is written first or not)
– Rationale
– Additional precomputed fields (see Section 7.3)

• Average score across the ratings
• Bulleted summary of rationales (see Section 4.2)
• Additional custom fields (see Sections 4.3.4 and 7.1)

4https://huggingface.co/datasets/lmsys/chatbot_arena_
conversations

5https://cloud.google.com/vertex-ai/docs/generative-ai/
learn/overview

6We obtained a category tag for each input prompt by using an LLM. We
ask the LLM to classify into one of the eight categories used in the MT Bench
dataset [57] or a few additional categories we provided. We did this just for
the purpose of generating the example figures. Our target users have access to
prompt sets already tagged with categories.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview

4.2 Interactive Table
The interface of LLM Comparator features the interactive table, which
takes up over half of the screen. This view allows users to inspect
individual examples in detail (DG1). Each row in the table represents
a prompt, responses from two models, and the average score from the
raters. The two models are color-coded: blue for Model A (test) and
orange for Model B (baseline). The rater’s preferences are indicated by
slightly different shades: lighter blue indicating rows where the rater
prefers A, darker orange for the cases where the rater prefers B, and
gray for ties. The table provides basic functionalities for interactive
exploration of tables, such as dynamic sorting and filtering. A few
unique features are highlighted below:

Text reading. Our informal interviews suggested that it is crucial to
enhance the user’s browsing experience for lengthy texts. By default,
each row in the table maintains a consistent height, allowing users to
view multiple rows simultaneously on one screen, even with lengthy
text responses. To access full text, users can scroll within each cell
or expand it. Furthermore, to facilitate efficient comparison of two
response texts (DG2-3), we highlight overlapping words in green text
(e.g., “When submitting ...” in Figure 2).

Rating details. Users can inspect the details of the ratings by click-
ing on the score column, which opens up the “Individual Ratings for
Selected Example” view, as shown in Figure 2. In this example, it
has received six ratings. The view visualizes the distribution of rating
scores as a histogram and offers a table that presents all the details
collected from each rater. Each row represents a rating by a single LLM
run, displaying the rating in string format, the converted numeric score,
and the rater’s rationales.

Rationale summary. Rationales are often too extensive to read in
their entirety, especially when multiple raters are involved. To help
users easily understand the common theme across rationales from
repeated runs (DG2-2), we summarize a set of long rationale texts into
a bulleted list using another LLM (in Figure 2, rightmost column of
the upper table). Please see Appendix A2 for the prompt we used.
While there exist a mix of ratings favoring either of the two models,
the summary focuses on the ratings favoring the majority side. If an
example receives six ratings with an average score favoring A (4 ratings
for A being better and 2 for B), we instruct the LLM to summarize the
four rationales that favor A.

4.3 Visualization Summary
The visualization summary view comprises multiple panels, each de-
signed to support specific user workflows (when, why, and how anal-
yses) (DG2). These panels provide aggregated summaries of the data
in the interactive table, while also enabling users to dynamically filter
individual examples (DG1).

4.3.1 Score Distribution
When presented with a summary metric (e.g., average score), people
often seek to explore the underlying distribution. The score distribution
panel facilitates this by providing a histogram of the scores. The
background color indicates the winning side of the model. Users can
dynamically adjust the score threshold to determine whether the score
indicates A wins, B wins, or tie.

4.3.2 Metrics by Prompt Category (when)
To answer the common analytical question of under what conditions
a model performs better or worse than the other (DG2-1), we provide
a visualization of performance across prompt categories (shown in
Figure 3). This allows users identify prompt categories with notably
higher or lower scores, helping them determine which examples to
examine more closely. In Figure 1 (2-1 on the right) the “Coding”
category is selected, which shows high scores.

For each category, we visualize two primary metrics which our target
users are interested: average score and win rate. In addition, we display
95% confidence interval of values. This helps users to see how much
they can rely on the metric scores at slice-level. For slices with small
sample sizes, users should be careful to conclude their performance
based on the average score, and the confidence interval provides tools

Fig. 3: The metrics by prompt category panel provides the summary
metrics sliced by prompt categories. Two metrics, average scores and
win rates, are visualized. For the win rates, the bar width encodes
the proportion of examples with A being better or B being better. The
95% confidence intervals are also visualized. Colored numbers indicate
statistical significance.

for users to consider it. The numbers that are statistically significantly
higher or lower than the baseline values (i.e., 0.0 for average scores and
50% for win rates) are highlighted with background colors.

4.3.3 Rationale Clusters (why)

To make it easier for users to understand the reasoning behind the
rater’s choices (DG2-2), we group a large number of rationales into
representative themes. Although traditional methods exist, such as
clustering the embeddings of rationales and subsequently labeling the
clusters, we chose a new LLM-based approach, drawing inspiration
from recent research [52, 58]. We obtain a set of cluster titles using
a separate LLM and assign each rationale bullet to clusters based on
embedding similarity. Specifically, it consists of the following steps:

1. (Initial Clusters) We begin by instructing an LLM to generate 3
to 5 diverse and representative cluster labels given a sample of
rationale bullets.7

2. (Obtain Embeddings) To map each rationale bullet into clusters,
we obtain an embedding vector for each rationale, as well as for
each cluster label.8 Since text embeddings capture both seman-
tic and syntactic information, while we only care semantics, we
paraphrase each bullet by generating three variations (using the
prompt in Appendix A3) and averaged their embeddings. Oth-
erwise, bullets could form a cluster even if their meanings are
different (e.g., “provides more creative text” and “provides more
detailed text”).

3. (Cluster Assignments) Each rationale is then assigned to clusters
based on embedding similarity to the cluster labels. If the co-
sine similarity between a bullet and a label exceeds a threshold
(e.g., 0.8), it is considered a match. A single rationale can be-
long to multiple clusters or even none, allowing for flexibility in
categorization (i.e., soft clustering).

4. (Near-Duplicate Removal) We observed that generated clusters
are often too similar to each other. To remove these near-duplicate
cluster titles, we discarded ones that have a large fraction of
assignment overlaps with other clusters.

7We sampled a subset of 200 bullets due to limitations in the context window
size. The rest of the bullets will be used in the next rounds.

8We used Google Cloud’s text-embeddings APIs at https:
//cloud.google.com/vertex-ai/docs/generative-ai/embeddings/
get-text-embeddings.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings

Fig. 4: The rationale clusters panel lists rationales commonly used by
the automatic rater. Users can dynamically add clusters to compare the
frequency of relevant rationales between the two models.

5. (Next Round for Unassigned Bullets) There often still remain
several bullets that are not assigned to any of the existing clusters.
We take these unassigned items and ask the LLM to generate
another 3-5 cluster labels only from these items.

6. (Repeat) We repeat these steps until we find 10 cluster labels.
In fact, this iterative clustering process resembles people’s sense-

making process [37]. People often focus on large groups first, and then
iteratively focus on items that are not assigned to the larger ones, which
often results in more effective clusters [11, 12]. This can be effective in
our case, as LLMs also do not often capture long-tailed items that are
supposed to be grouped together.

The tool visualizes the count of instances where model A or B is
rated higher for each cluster label, as illustrated in Figure 4. Sorting
these counts helps users identify common rationales. Note that our
decision to employ soft clustering methods can reduce potential mis-
representation in the sorted order compared to hard clustering methods
which force each item into a single cluster even if it fits multiple ones.
The visualization also facilitates analysis of the A versus B count ratio.
For example, a notably higher count for B in a cluster like “is more
concise” (as seen in Figure 4) might suggest that B’s responses tend to
be more concise than A’s.

Users have multiple ways to interact with and refine the clustering
results. They can add or remove individual clusters, or even regenerate
the entire cluster set. These operations are performed dynamically
in a few to several seconds because we can reuse the precomputed
embeddings. These interactions could be useful especially because
the clustering results cannot be perfect. For example, if users think
the quality of a cluster is questionable, they can remove it and add a
new one. Furthermore, the sorted list of clusters updates in response
to other filters (e.g., prompt category filter), and the cluster list can be
regenerated for filtered examples. This allows users to explore how
different rationales apply to various prompt types.

4.3.4 N-grams, Custom Functions & Precomputed Fields (how)
While the rationale clusters offer insights into high-level differences
between responses, our users have also expressed needs to analyze the
differences using lower-level features in a flexible and scalable way. We
take a multifaceted approach to support such analysis that helps users
examine qualitative differences between model responses (DG2-3) with
n-gram counts, custom functions, and precomputed fields:

N-gram Counts. The tool displays frequently occurring n-grams
(n=1 to 5) in responses from either model A or B, compared to their

Fig. 5: Users can dynamically specify functions that apply to responses.
In this example, a function defined with a regular expression (i.e.,
"\n([*-]|[0-9].)\s") checks for the presence of bulleted lists in each
response. Results are shown as purple chips if present, gray if not.

counterpart (e.g., “Here’s an example” appears 60 times in A’s re-
sponses but only 5 times in B’s).

Custom Functions. The tool allows users to create their own
custom functions using regular expressions or JavaScript expressions.
For example, the presence of bulleted items can be checked with a
regular expression, “\n([*-])\s”; word count can be calculated using
a JavaScript expression, “output.split(/\s+/).length”. These
user-defined functions are immediately applied to individual responses,
returning either boolean or numeric values:

• Boolean: For boolean values (e.g., presence of bulleted items),
the tool visualizes the outcomes as percentage bar charts side-by-
side (see Figure 5 right).

• Numeric: For numeric values (e.g., word count), histograms are
displayed side-by-side.

The returned values will also be displayed on top of the responses when
selected (as shown in Figure 5 left), as well as displayed as a new
column added to the table (similar to the “Tone” column in Figure 7).

Precomputed Fields While the custom functions provide a flexi-
ble way to create derived attributes from text fields dynamically, certain
users prefer running complex pipelines to compute values, such as
those necessitating external libraries or LLMs [32]. To accommodate
their needs, we enable users to specify precomputed fields in the input
data file and load them into the interface. They are shown as additional
attributes to the table and visualized on the right side. We describe
further details about precomputed fields in Section 7.1.

These three different complementary approaches offer users simple
yet powerful tools to analyze qualitative differences between two mod-
els. They provide two major benefits. First, these lower-level analyses
aid in understanding the nuances of the rationales at a higher-level. For
instance, when given a rationale “B is more organized,” users might
want to understand precisely what aspects of the response contribute to
it being perceived as “organized.” They can interactively form hypothe-
ses about its meanings and quickly test them, such as by specifying
custom functions that detect bulleted lists. Second, and more impor-
tantly, these analyses can yield insights that can be directly translated
into actions for model improvement. For example, if users hypothesize
that their model’s low accuracy for certain slices is caused by the pres-
ence of certain phrases, they can locate and remove similar patterns
from training data.

4.4 Implementation
LLM Comparator is a web-based application. Its preprocessing
module loads a data file from the automatic LLM-based evaluation
pipeline, which includes a list of prompts response pairs, and rat-
ings with rationales. It then uses an LLM to summarize the ratio-
nales into bullet points, generate cluster labels, and compute embed-
dings for cluster assignments. The Python-based server processes

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

this data file and sends it to the client in JSON format. All subse-
quent computations, like filtering, sorting, and cluster assignments,
happen dynamically within the client’s web browser. The client-
side code uses TypeScript with the Lit Web Components framework
(https://lit.dev). Upon a user’s request to recreate rationale clus-
ters, the server makes a remote procedure (RPC) call to an LLM. We
have open-sourced the core features of LLM Comparator, available at
https://github.com/PAIR-code/llm-comparator.

4.5 System Deployment
LLM Comparator has been iteratively developed with extensive feed-
back from engineers, researchers, and data scientists at Google. Fol-
lowing an initial announcement to selected internal teams working on
LLM development in late 2023, the tool gained traction, with more than
1,000 users within the first five months. During this period, it supported
the analysis of more than 2,500 unique side-by-side evaluation runs.
Among these users, over 280 users have analyzed at least three different
experiments, with over 100 users opening 10 or more and over 10 users
extensively using the tool for 50 or more.

LLM Comparator has been deployed on evaluation pipelines for
many teams developing LLMs for their products at Google. During
the final stage of these pipelines, preprocessing is performed for LLM
Comparator, and upon pipeline completion, users are provided with a
direct link to the tool via the platform interface.

The tool’s earlier versions offered a subset of the visualization panels
described in this section, along with the interactive table. We have
continuously added new features based on user feedback. For instance,
the rationale cluster panel was introduced in a later iteration, and we
evaluate its impact before deployment through an observational study
in Section 6. We further discuss our iterations in Section 7.

5 USAGE SCENARIOS

We illustrate scenarios of how LLM Comparator can be used. Please
note that due to confidentiality, we have changed the specific details
of the models, data, and prompt categories in this section. However, it
faithfully portrays the overarching patterns of use.

5.1 Understanding the Performance Gain
Suppose Alice, a research engineer, wants to evaluate a new model
for chat applications. To improve her team’s previously-trained model,
they have trained a new model with an updated dataset containing more
recent information. The automatic side-by-side evaluation, a standard
evaluation process used by her team, indicated a slight win for the new
model (54% win rate) compared to their previous model, and Alice
seeks deeper insights with LLM Comparator.

Alice is interested in exploring the performance (i.e., win rate) by
prompt categories. She easily notices elevated scores in categories
related to fact-finding and news, which was encouraging. To gain a
more focused understanding, Alice chooses to filter the data for the
news category. Subsequently, she examines the rationale clusters panel
to identify the specific rationales employed by the automatic rater for
this category. From the rationale clusters panel (shown in Figure 4),
Alice notices that the most common rationale for their model is “is
more detailed”. She subsequently finds from the custom functions panel
that the responses from Model A (their new model) are longer than the
baseline model’s responses. The next common rationale was “provides
more up-to-date information”’, which is significantly more common for
Model A than for B. This suggests that the dataset update was effective
in improving the timeliness of Model A’s responses.

To further investigate this finding, Alice examines individual model
responses. By browsing the table, she finds that many responses from
B are simply apologies stating that the model does not have up-to-date
information. Alice also examines the N-grams panel and found that
the trigram “I’m sorry but” is significantly more common in Model B’s
responses. Meanwhile, Alice is concerned that some of the responses
from A may have encountered hallucination, as it is a bit surprising
that Model A’s responses rarely mention apologies compared to B’s. To
further investigate this, she reaches out to a researcher colleague who
has experience in measuring and mitigating hallucination issues.

5.2 Looking for Patterns from Less Successful Cases
Bob is a researcher whose team is interested in finding an optimal set
of training datasets for their model training. His team recently trained
a model with a completely new set of datasets and wants to see if there
is any model improvement and how the two models behave differently.

The overall win rate metric indicates 45%, prompting him to under-
stand the differences between the two models. Bob notices that his
model scored lower in categories pertaining to creativity and poetry
tasks. From the rationale clusters for the poetry task, he finds that the
common rationale, which he did not see from other tasks, is “is more
engaging” which is reasonable. However, it stands out is that “is more
detailed” appeared more frequently in Model A than in B.

To further examine this discrepancy, Bob looks at the custom function
panel and finds that Model A’s responses include more bulleted lists.
He hypothesizes that this may be a contributing factor to the lower
win rate for Model B. Poetry tasks typically require a single response,
and providing a bulleted list of possible responses may be considered
unnecessary by raters. Bob examines the table and finds that several
instances of Model A’s responses include additional explanations of
why the model generated a particular phrase. He believes that the
automatic raters may have judged these explanations as unnecessary.

Bob proceeds to discuss these findings with his colleagues to identify
similar patterns from training data. By talking with the data team mem-
bers, he learns that the there is a very small amount of poetry-related
tasks, and many training examples include bulleted lists. He discusses
the idea of diversifying the training datasets for model improvement.

6 USER STUDIES

We conducted an observational study to examine the usage behavior
of LLM Comparator, followed by a larger-scale survey to assess the
generalizability of the findings from the observational study.

6.1 Observational Study Setup
Participants. We recruited six participants (P1-6) from Google who

had conducted automatic side-by-side evaluations over the preceding
month. They include software engineers, researchers, and data scien-
tists actively involved in LLM development or related products. Some
also had prior exposure to earlier versions of LLM Comparator, which
lacked certain features like rationale clusters.

Study Protocol. Each session was held remotely via video confer-
encing and lasted about 45 minutes. It began with a 10-minute interview
about their experience in evaluating LLMs, followed by a brief tutorial
(5-10 minutes) of the tool. Participants then used the tool to analyze an
evaluation run they recently had created on internal platforms, while
thinking aloud. The version of the tool used in the study included all
components described in Section 4, except for the precomputed fields.
The session ended with a brief reflective interview, and they received
an incentive worth $25 USD. Thematic analysis was performed on the
collected data.

6.2 Key Usage Patterns
From the observational study, we have identified three key usage pat-
terns. To protect participant confidentiality, certain details about the
models, data, and prompt categories have been redacted. However, the
core usage patterns remain accurately represented.

6.2.1 Example-first deep dive
Two participants, P1 and P2, dedicated considerable time to thoroughly
reading prompts and responses to gain a deeper understanding, particu-
larly at the beginning of their exploration. Observing that the overall
metric favored Model B (baseline model), P2 focused on examining
examples where Model A (their model) scored poorly. They sorted
examples by score, meticulously reviewed each prompt to identify one
they can familiarize with, and then compared the response pairs for the
selected prompt. P2 stressed the importance of this process, highlight-
ing the necessity to verify the automatic rater’s accuracy since it may
not always be correct. P1 employed an interesting approach by hiding
the score column and attempting to predict the automatic rater’s scores,
simulating the process used for human raters.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://lit.dev
https://github.com/PAIR-code/llm-comparator

As they progressed through their inspection of individual examples,
the participants began to form hypotheses about how the two mod-
els behaved differently. P2 observed that Model A’s response to a
coding prompt was succinct, providing only code, whereas Model B’s
responses additionally included detailed explanations. This discrepancy
caught their attention, as it could potentially be attributed to a particular
change made to the model. To investigate this further, they applied a
filter to the examples based on the prompt category (specifically, cod-
ing). They promptly discovered additional examples displaying similar
patterns, and they also noticed a rationale cluster labeled “Provide clear
explanations” with a higher count for B, supporting their hypothesis.

6.2.2 Prior experience-based testing
Three participants, P3, P4, and P5, utilized their prior knowledge to
identify undesirable behaviors in the model. P3 looked for responses
containing phrases such as “I’m sorry” or “unfortunately,” which often
indicate a model’s refusal to answer prompts. They aimed to assess
whether these responses indicated genuinely unanswerable prompts
or areas where the model could be improved. Likewise, P5 targeted
superfluous phrases, such as responses beginning sentences with “here
is” or excessive use of bold text, which is a known tendency of LLMs [2]
to optimize their objectives.

The participants maintained a collection of these unwanted patterns
for testing [55]. To detect these patterns in LLM Comparator, they
initially employed custom functions to search for specific phrases, then
used the charts to compare their occurrences. For example, upon identi-
fying a notable difference in counts, they examined the corresponding
examples and used rationale clusters to determine if automatic raters
took these details into account.

6.2.3 Rationale-centric top-down exploration
The rationale clusters panel introduced a range of new exploration
strategies that were not available in earlier versions of LLM Comparator.
P2, who had previously used the tool primarily for reading individual
examples, found the updated version’s rationale clusters enhanced
their ability to validate hypotheses about model behavior. Previously,
understanding the rater’s rationales required selecting an example and
accessing the individual ratings view. The new feature streamlined
this process. P3, a frequent user of the tool, initially searched for
specific keywords like “sorry.” They later discovered the rationale
cluster “Avoids harmful content.” By filtering for this cluster, they were
pleased to uncover relevant keywords from the N-grams panel, such as
“I’m sorry,” which they had previously searched for manually.

Additionally, participants took a more exploratory approach, en-
gaging actively with the visualizations to uncover interesting patterns.
The dynamically updated coordinated views caught their attention and
fostered curiosity. P6 observed a category with a notably higher win
rate in the visualization. Filtering this category led them to naturally
form new hypotheses based on a rationale cluster related to conciseness.
Using a custom function for word count, they identified several very
short (1-2 words) and irrelevant responses.

6.3 User Survey
To assess the generalizability of our findings to a larger user base, we
conducted a survey. We reached out to those who used LLM Compara-
tor internally at Google multiple times in the two months preceding
the launch of the survey. A total of 26 participants have completed it,
including 19 software engineers, three researchers, two data scientists,
and two other roles. Of them, 8 participants reported analyzing 20 or
more evaluation runs on LLM Comparator, 10 did between 5 and 19,
and 8 did fewer than 5.

The first section of the survey comprised 10 questions grounded
in our observational study findings. We asked how often participants
encountered specific scenarios while using the tool. They responded
on a 5-point Likert scale (1 = never, 5 = always). Notably, 18 out of
26 participants reported spending time reading individual prompt and
responses (score of 4 or 5). Similarly, 12 people indicated frequent
engagement in looking for known undesirable patterns, and 15 reported
formulating hypotheses about model behavior.

Fig. 6: Early version of LLM Comparator designed for users to hypothe-
size behavioral differences between responses and test them with LLMs.

Fig. 7: The tool flexibly supports additional fields at example-level,
response-level, and rating-level. This figure illustrates a synthetic usage
example, consisting of four additional fields: prompt’s language predeter-
mined, term overlap rate between two responses precomputed offline,
tone of responses determined by an LLM, and safety of responses rated
by human raters.

The survey also included 10 questions regarding user satisfaction
with specific features, also on a 5-point scale (1 = strongly disagree, 5
= strongly agree). Usability of reading individual responses received
high marks, with 22 out of 26 participants scoring 4 or 5. Similarly, 19
people expressed satisfaction with the speed and ease of filtering and
sorting data. However, feedback on pattern search features suggested
room for improvement, with 12 participants giving 4 or 5. Lastly, 20
out of 249 participants found it helpful for confidently discerning dif-
ferences between two models and for finding opportunities to improve
model performance. The full list of survey questions and results are
available in Appendix B.

7 DESIGN ITERATIONS AND UPDATES

LLM Comparator has been evolved through many iterations with our
users throughout a year of investigation. This section discusses how
the tool has evolved and what lessons we have learned.

7.1 Flexible Attribute Additions
Many users expressed a desire to see pre-computed fields in the tool,
as discussed in Section 4.3.4. While the tool features the custom func-
tions, users wanted more flexibility to compute complex metrics (e.g.,
presence of repetitive sentences, similarity between two responses)
possibly by using external libraries or LLMs. To address these needs,
we allowed users to add attributes for various data types and visualize
their distributions with basic charts. The supported data types include:

• Categorical: Bar charts (e.g., language used in prompt)
• Numeric: Histograms (e.g., similarity between two responses)
9Data for two participants are missing from these questions.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

• Per-model Categorical: Grouped bar charts (e.g., response tone)
• Per-model Boolean: Side-by-side percentage bar charts (Same as

Custom Functions)
• Per-model Numeric: Side-by-side histograms (Same as Custom

Functions)
Figure 7 illustrates an example with the “Language” and “Term Overlap
Rate” columns. This iteration demonstrates the importance of providing
flexibility in tool design. With this customization, we can meet the
needs of a diverse user base while supporting critical user workflows.

7.2 High-level Attribute Extraction using LLMs
While the custom functions are effective for analyzing qualitative dif-
ferences, it has limitations in capturing high-level attributes (e.g., tone,
safety). A promising direction to address this problem would be using
LLMs, and we initially designed our tool to support such analyses,
as shown in Figure 6). We asked LLMs to describe the differences
between responses to guide users to form hypothesis about behavioral
differences between models and dynamically test these hypotheses by
running LLM queries over each example, inspired by Zhong et al [58].
While this approach had potential, we ultimately decided against it
due to limitations in speed and accuracy—it requires a separate LLM
call per example, making it computationally too expensive to provide
real-time feedback; and the accuracy can be inconsistent, especially for
complex and nuanced tasks. As a compromise, we allowed users to add
pre-computed fields, so that they can run LLMs as a preprocessing step
(e.g., the “Tone” column in Figure 7). This provides more flexibility
while avoiding the performance and accuracy issues associated with
real-time LLM queries.

7.3 Multiple Rating Criteria
From our conversation with the users, we have also identified the needs
for LLM Comparator to accommodate side-by-side evaluations per-
formed in multiple criteria. In human evaluation, raters are often asked
to rate LLM responses in multiple criteria (e.g., quality, groundedness,
safety) or fine-grained criteria [5, 32, 46]. To support these scenarios,
the tool requires to handle additional fields at the rating level. Display-
ing these data within the interactive table and visualization summary
presents a non-trivial challenge due to the one-to-many relationship
between prompts and criteria values, which requires data duplication
or nested tables [6]. To accommodate this data structure, we have
implemented the visualization of aggregated data using grouped bar
charts (for categorical variables) embedded within individual cells (see
the “Safety” column in Figure 7) and aggregate these values across the
dataset (on the right side). This extension has enabled the tool’s appli-
cation to various scenarios, including human evaluation data, fostering
a flexible framework for analyzing diverse LLM evaluation settings.

8 EXPERIMENTS FOR RATIONALE CLUSTERS

We conducted an experiment to evaluate our rationale clustering pro-
cess described in Section 4.3.3. We aimed to investigate whether our
soft-clustering-based and LLM-based method can create a set of cluster
labels that are (1) distinct (mutually exclusive) and (2) comprehen-
sive coverage (collectively exhaustive) and can (3) accurately assign
rationales to these cluster labels.

Baseline methods. We compared our method to two baseline meth-
ods: k-means and fuzzy c-means [7], chosen as representative examples
of traditional hard and soft clustering methods, respectively. Unlike our
method, these methods do not generate cluster labels, while our tool
requires that each cluster has a text label to be displayed in the inter-
face. Thus, for comparison, we employed a stratightforward method to
generate cluster labels for these baseline methods using an LLM. We
obtained embeddings of the paraphrased bullets,10 ran the clustering
algorithms to form clusters of bullets,11 and then generated cluster

10We used Google Cloud (https://cloud.google.com/vertex-ai/
docs/generative-ai/embeddings/get-text-embeddings).

11For k-means, we used scikit-learn (https://scikit-learn.org/); for
fuzzy c-means, we used a publicly available implementation (https://github.
com/omadson/fuzzy-c-means/).

labels by asking an LLM to summarize the assigned rationale bullets.
Ground-truth assignments. Our evaluation requires a module that

produces high quality cluster assignments that we can use as an ora-
cle. In other words, given a rationale bullet and 10 cluster labels, we
need to know which labels are supposed to be determined as relevant.
Due to the scale of our tests, asking humans to perform this task is
impractical. Instead, we use a text entailment model [17] for automatic
assignment. These entailment models have been used to verify whether
a hypothesis is true or false given a premise with high accuracy [26].
We treat a rationale bullet as a premise and a cluster label as a hypoth-
esis. If it returns true with a score above a threshold (i.e., 0.8), we
consider it as a valid cluster assignment, assuming that it establishes a
ground-truth assignment between rationale bullets and cluster labels.
While this method is still too costly to use for cluster assignment in
practice because it requires a large model inference for each proposed
assignment, it is much faster than human ratings and can be used as
an oracle for validation. We manually annotated a small sample of
data (800 rationale-cluster pairs) to assess the entailment model’s agree-
ment with human judgment, and we found a 91% agreement rate. The
model we used was trained by fine-tuning a T5 11B model [39] over
several natural language inference, fact verification, and paraphrase
detection datasets (e.g., MNLI) [26]. The model achieves 91.5 F1 on
the binary version of the MNLI validation set, and 97.6% precision at
our threshold of 0.8.

Evaluation measures. Given a set of rationale bullets, a set of
cluster labels generated from each of the three clustering methods
(i.e., k-means, c-means, our method), and the ground-truth assignment
between these two sets (based on the entailment model), we define
measures for the following three criteria as follows:

• Distinctiveness (Mutually Exclusive): Are the cluster labels dis-
tinct enough to each other? We calculate Jaccard similarity be-
tween rationale assignments for any pair of clusters, then subtract
this value from 1.0 to obtain a measure where higher values indi-
cate higher distinctiveness.

• Coverage (Collectively Exhaustive): Does the set of cluster labels
cover the entire set of rationales? We compute the proportion of
rationales that are assigned to at least one of the clusters.

• Accurate Assignment: Is each rationale bullet correctly assigned
to a relevant cluster? We compute two metrics: Jaccard similarity
and Normalized Mutual Information (NMI) between the actual
cluster assignments and entailment model results.

Datasets. We obtained a list of prompts and paired responses from
the Chatbot Arena conversation dataset.12 We chose 10 model pairs
(e.g., vicuna-13b vs. alpaca-13b) that have at least 200 examples. Then
we used the prompts listed in Appendix A1 to generate automatic side-
by-side ratings and bulleted summary of rationales, and then generate
10 cluster labels for each of the three methods described above.

Results. Table 1 summarizes the results. Regarding the distinc-
tiveness of cluster labels, our method produces 10 cluster labels that
exhibit greater distinctiveness from each other compared to the baseline
methods. In terms of the coverage of the labels, there is no significant
differences among the three methods. For the most important measure
of accurate assignment, our method outperforms the other two methods
significantly. The notably low value for k-means (i.e., 0.189 of Jaccard
similarity) is caused by the fact that k-means always assigns one cluster
to each item, while the ground truth does not assign a single cluster to
each item. There are many rationales that are relevant to zero or multi-
ple clusters. The fuzzy c-means algorithm receives a higher score due
to its soft clustering approach. However, its lower value may stem from
from how it calculates assignment scores based on relative distances to
centroids, by definition. This might not accurately capture the degree
of similarity between a rationale and a cluster label.

The results suggest that our method generates clusters of reasonable
quality. Our LLM-based approach can generate cluster labels that are
distinct to each other, and our embedding similarity-based approach

12https://huggingface.co/datasets/lmsys/chatbot_arena_
conversations

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://scikit-learn.org/
https://github.com/omadson/fuzzy-c-means/
https://github.com/omadson/fuzzy-c-means/
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations

Model Distinctiveness Coverage Accurate Assignment
of Labels of Labels Jaccard, NMI

k-means .931 (±.029) .479 (±.053) .189 (±.033), .233 (±.061)
c-means .932 (±.030) .452 (±.061) .430 (±.086), .282 (±.079)

Ours .978 (±.010) .432 (±.098) .630 (±.050), .381 (±.070)

Table 1: Experimental results comparing the quality of rationale clusters
generated by our method with those from two baseline methods, based
on three criteria: distinctiveness and coverage of cluster labels, and
accurate assignment. The numbers represent means over 10 data
collections, with standard deviations shown in parentheses. Higher
values indicate better performance. Bold numbers highlight the highest
values among the three models.

yields a reasonable accuracy (i.e., 0.630 for Jaccard similarity and
0.381 for NMI). While the results hold promise, further research is
necessary for improving the quality of clusters. For example, for cluster
assignments, we may leverage entailment models (beyond evaluation
purposes) or querying LLMs [52]. While the computational cost of
applying these models to individual rationale-cluster pairs currently
presents a bottleneck, we anticipate advancements to alleviate this
constraint in the near future.

9 RELATED WORK

Evaluation of LLMs. The evaluation of LLMs is a rapidly evolving
topic, encompassing various tasks, benchmarks, and evaluation pro-
tocols. A recent survey [13] categorized these efforts into three key
dimensions: what to evaluate (e.g., summarization, factuality), where to
evaluate (i.e., selecting datasets and benchmarks), and how to evaluate
(e.g., automatic metrics, human evaluation, dynamic testing).

Using LLMs for evaluating LLMs. Among the various evaluation
methods, the approach of using another LLM (known as LLM-as-a-
judge [57]) has recently gained significant attention [34]. As men-
tioned in the Introduction, this method has been widely employed due
to its cost-effectiveness, though less accurate than human evaluation.
Prior research indicates that its performance can be enhanced through
fine-tuning [33, 51]. In addition, it can be applied beyond evaluating
general-purpose LLMs to assessing specific aspects like factuality and
supporting custom evaluation criteria [31]. Our tool is agnostic to the
choice of evaluation prompts and model types, as long as data can map
to our schema defined in Section 4.1.

Interactive Tools for LLM Evaluations. Interactive tools for eval-
uating and comparing LLMs have started to emerge since late 2023.
ChainForge [4] offers a flexible framework that enables comparisons
through user-specified functions. EvalLM [32] presented an interactive
tool for evaluating prompts for LLMs side-by-side through user-defined
criteria. These concurrently developed tools focus on assisting prompt
designers in refining and evaluating their prompts using individual
prompt analysis or specific evaluation criteria. In contrast, LLM Com-
parator aims to help LLM developers understand performance differ-
ences between two models, especially when analyzing large datasets.
We facilitate this through visual analytics workflows.

Visual Analytics for AI Interpretability. Numerous methodolo-
gies and tools have been developed to support visual analytics for ma-
chine learning interpretability [25, 48, 54]. Early research highlighted
the need for example-level [1] and slice-level analysis [29, 36, 53].
Other tools employed interpretability methods to explain model predic-
tions [9,14,22,45] and provided analysis at a conceptual-level or based
on user-defined dimensions [27, 28, 50, 56]. In addition, many tools
have been designed to support model comparison [8, 21, 24, 40, 42, 49].
With the rise of LLMs, visual analytics tools designed to target specific
language models have been proposed [10, 15, 16, 42, 43]. For instance,
iScore [16] is designed for interpreting LLM-based scoring models
used in the education domain.

10 QUALITATIVE FEEDBACK AND LIMITATIONS

We have received feedback from the users of LLM Comparator from
various channels.

10.1 User Satisfaction

First, many users appreciated the tool’s ability to quickly load their
evaluation results and explore individual examples. Although browsing
text data in a table may be basic, the sudden advent of the LLM era
has created an urgent need for tools for generative texts [38], and
LLM Comparator has successfully met these needs. One said, “LLM
Comparator has been an absolute game changer. Many people have
written their own [notebooks] comparing two models’ generations, but
LLM Comparator just executes this so well and nicely integrate into
the rest of our evaluation pipelines such that people actually use it,
frequently.” Another said, “a lot of what we use the tool is for manual
inspection of samples, [...] scrolling through prompt is easy [...]”

In addition, the ability to slice, filter, and sort examples by various
conditions was also a major advantage. Users expressed satisfaction
with the experience of dynamic filters working quickly with almost no
latency. One said, “The low latency bucketing, sorting and filtering
capabilities allow us to find interesting pockets of information.” An-
other said, “I like that there are graphs and charts provided and I can
interactively click on them for slicing the data I want to do a deep dive.”

Lastly, the tool allowed users to go beyond simply exploration of
data. They were able to find problematic patterns or discover insights
for model improvements. One said, “Ultimately, our ability to quickly
identify loss-patterns allows us to determine how to improve model
quality. Conversely, our ability to identify win-patterns can play a role
[...]” Another said, “We’ve been using [LLM Comparator] as the main
visualization tool for the last few months for any [dataset] we make.”

10.2 Limitations and Future Work

We have also received several suggestions for future research.
Imperfect clustering. The rationale clustering pipeline, which re-

lies on multiple LLM calls, is susceptible to errors. Exploring alter-
native computational methods, such as using LLMs that have larger
context window, and implementing advanced user interactions, beyond
the current functionality of adding new clusters, could improve the
accuracy and efficiency.

Pre-configured undesirable patterns. Users have requested that
the tool include pre-configured patterns for common issues, such as
repetitive sentences, to eliminate the need for manually defining new
functions. We can consider offering a library of predefined patterns or
functions that users can access and utilize.

Revisiting information visualization for multivariate data. The
ability to extract various structured attributes from unstructured text
opens up a new opportunity to leverage traditional information visu-
alization methods. For example, multivariate data visualization tech-
niques can be incorporated into the tool for more advanced analysis,
including correlation between rating scores and fine-grained criteria.

Combining with explainable AI methods. There are opportunities
to use AI explanation methods to improve the interpretability of the
rationales. We may apply text saliency methods to LLM responses [20,
44] and the rationale summary process, which would allow users to see
which parts of the prompt had the most impact on the response.

Comparing more than two models. Another area for future work
is the comparison of more than two models. In practice, model develop-
ers often create several models and run several side-by-side experiments.
It would be interesting to investigate visual design challenges involved
in comparing these three or more models’ responses.

ACKNOWLEDGMENTS

We thank Ryan Mullins, Sujeevan Rajayogam, Fernanda Viégas, Martin
Wattenberg, Tolga Bolukbasi, Timothy Chung, Ankur Taly, Ludovic
Peran, and our colleagues on the People + AI Research (PAIR) team at
Google, and the users of LLM Comparator for their invaluable support,
feedback, and suggestions.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

REFERENCES

[1] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh.
ModelTracker: Redesigning performance analysis tools for machine learn-
ing. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI), pp. 337–346, 2015. doi: 10.1145/
2702123.2702509 9

[2] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016. 7

[3] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shak-
eri, E. Taropa, P. Bailey, Z. Chen, et al. PaLM 2 technical report. arXiv
preprint arXiv:2305.10403, 2023. 2

[4] I. Arawjo, C. Swoopes, P. Vaithilingam, M. Wattenberg, and E. Glassman.
ChainForge: A visual toolkit for prompt engineering and LLM hypothesis
testing. In Proceedings of the CHI Conference on Human Factors in
Computing Systems, 2024. doi: 10.1145/3613904.364201 9

[5] L. Aroyo, A. Taylor, M. Diaz, C. Homan, A. Parrish, G. Serapio-García,
V. Prabhakaran, and D. Wang. Dices dataset: Diversity in conversational ai
evaluation for safety. Advances in Neural Information Processing Systems,
36, 2024. 8

[6] E. Bakke and D. R. Karger. Expressive query construction through direct
manipulation of nested relational results. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD), pp. 1377–
1392, 2016. doi: 10.1145/2882903.291521 8

[7] J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means clustering
algorithm. Computers & geosciences, 10(2-3):191–203, 1984. 8

[8] A. Boggust, B. Carter, and A. Satyanarayan. Embedding Comparator:
Visualizing differences in global structure and local neighborhoods via
small multiples. In 27th International Conference on Intelligent User
Interfaces (IUI), pp. 746–766, 2022. doi: 10.1145/3490099.3511122 9

[9] A. Boggust, B. Hoover, A. Satyanarayan, and H. Strobelt. Shared interest:
Measuring human-ai alignment to identify recurring patterns in model
behavior. In Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, pp. 1–17, 2022. doi: 10.1145/3491102.3501965 9

[10] R. Brath, D. Keim, J. Knittel, S. Pan, P. Sommerauer, and H. Strobelt. The
role of interactive visualization in explaining (large) nlp models: from
data to inference. arXiv preprint arXiv:2301.04528, 2023. 9

[11] J. C. Chang, S. Amershi, and E. Kamar. Revolt: Collaborative crowdsourc-
ing for labeling machine learning datasets. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, pp. 2334–2346,
2017. doi: 10.1145/3025453.3026044 5

[12] J. C. Chang, A. Kittur, and N. Hahn. Alloy: Clustering with crowds and
computation. In Proceedings of the 2016 CHI Conference on Human Fac-
tors in Computing Systems, pp. 3180–3191, 2016. doi: 10.1145/2858036.
2858411 5

[13] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang, et al. A survey on evaluation of large language models.
ACM Transactions on Intelligent Systems and Technology, 15(3):1–45,
2024. doi: 10.1145/3641289 9

[14] F. Cheng, Y. Ming, and H. Qu. Dece: Decision explorer with counter-
factual explanations for machine learning models. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1438–1447, 2021. doi: 10.
1109/TVCG.2020.3030342 9

[15] A. Coscia and A. Endert. KnowledgeVIS: Interpreting language models by
comparing fill-in-the-blank prompts. IEEE Transactions on Visualization
and Computer Graphics, 2023. doi: 10.1109/TVCG.2023.3346713 9

[16] A. Coscia, L. Holmes, W. Morris, J. S. Choi, S. Crossley, and A. Endert. iS-
core: Visual analytics for interpreting how language models automatically
score summaries. In Proceedings of the 29th International Conference
on Intelligent User Interfaces (IUI), pp. 787–802, 2024. doi: 10.1145/
3640543.3645142 9

[17] I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual
entailment challenge. In Machine learning challenges workshop, pp.
177–190. Springer, 2005. 8

[18] S. Gehrmann, E. Clark, and T. Sellam. Repairing the cracked foundation:
A survey of obstacles in evaluation practices for generated text. Journal of
Artificial Intelligence Research, 77:103–166, 2023. 1

[19] Gemini Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut,
J. Schalkwyk, A. M. Dai, A. Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 2

[20] Gemma Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju,
S. Pathak, L. Sifre, M. Rivière, M. S. Kale, J. Love, P. Tafti, L. Hussenot,
P. G. Sessa, A. Chowdhery, A. Roberts, A. Barua, A. Botev, A. Castro-

Ros, A. Slone, A. Héliou, A. Tacchetti, A. Bulanova, A. Paterson, B. Tsai,
B. Shahriari, C. L. Lan, C. A. Choquette-Choo, C. Crepy, D. Cer, D. Ip-
polito, D. Reid, E. Buchatskaya, E. Ni, E. Noland, G. Yan, G. Tucker,
G.-C. Muraru, G. Rozhdestvenskiy, H. Michalewski, I. Tenney, I. Gr-
ishchenko, J. Austin, J. Keeling, J. Labanowski, J.-B. Lespiau, J. Stanway,
J. Brennan, J. Chen, J. Ferret, J. Chiu, J. Mao-Jones, K. Lee, K. Yu, K. Mil-
lican, L. L. Sjoesund, L. Lee, L. Dixon, M. Reid, M. Mikuła, M. Wirth,
M. Sharman, N. Chinaev, N. Thain, O. Bachem, O. Chang, O. Wahltinez,
P. Bailey, P. Michel, P. Yotov, R. Chaabouni, R. Comanescu, R. Jana,
R. Anil, R. McIlroy, R. Liu, R. Mullins, S. L. Smith, S. Borgeaud, S. Gir-
gin, S. Douglas, S. Pandya, S. Shakeri, S. De, T. Klimenko, T. Hennigan,
V. Feinberg, W. Stokowiec, Y. hui Chen, Z. Ahmed, Z. Gong, T. Warkentin,
L. Peran, M. Giang, C. Farabet, O. Vinyals, J. Dean, K. Kavukcuoglu,
D. Hassabis, Z. Ghahramani, D. Eck, J. Barral, F. Pereira, E. Collins,
A. Joulin, N. Fiedel, E. Senter, A. Andreev, and K. Kenealy. Gemma:
Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024. 9

[21] M. Gleicher, A. Barve, X. Yu, and F. Heimerl. Boxer: Interactive compari-
son of classifier results. Computer Graphics Forum, 39(3):181–193, 2020.
doi: 10.1111/cgf.13972 9

[22] O. Gomez, S. Holter, J. Yuan, and E. Bertini. Advice: Aggregated visual
counterfactual explanations for machine learning model validation. In
2021 IEEE Visualization Conference (VIS), pp. 31–35. IEEE, 2021. doi:
10.1109/VIS49827.2021.9623271 9

[23] Google Cloud. Perform automatic side-by-side evaluation, 2024.
https://cloud.google.com/vertex-ai/docs/generative-ai/
models/side-by-side-eval. 2

[24] F. Heimerl, C. Kralj, T. Möller, and M. Gleicher. embcomp: Visual
interactive comparison of vector embeddings. IEEE Transactions on
Visualization and Computer Graphics, 28(8):2953–2969, 2022. doi: 10.
1109/TVCG.2020.3045918 9

[25] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics, 25(8):2674–2693, 2019. doi: 10
.1109/TVCG.2018.2843369 9

[26] O. Honovich, R. Aharoni, J. Herzig, H. Taitelbaum, D. Kukliansy,
V. Cohen, T. Scialom, I. Szpektor, A. Hassidim, and Y. Matias.
True: Re-evaluating factual consistency evaluation. arXiv preprint
arXiv:2204.04991, 2022. 8

[27] M. N. Hoque, W. He, A. K. Shekar, L. Gou, and L. Ren. Visual concept
programming: A visual analytics approach to injecting human intelligence
at scale. IEEE Transactions on Visualization and Computer Graphics,
29(1):74–83, 2023. doi: 10.1109/TVCG.2022.3209466 9

[28] J. Huang, A. Mishra, B. C. Kwon, and C. Bryan. Conceptexplainer: Inter-
active explanation for deep neural networks from a concept perspective.
IEEE Transactions on Visualization and Computer Graphics, 29(1):831–
841, 2023. doi: 10.1109/TVCG.2022.3209384 9

[29] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau. ActiVis: Visual
exploration of industry-scale deep neural network models. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):88–97, 2018. doi:
10.1109/TVCG.2017.2744718 9

[30] M. Kahng, I. Tenney, M. Pushkarna, M. X. Liu, J. Wexler, E. Reif,
K. Kallarackal, M. Chang, M. Terry, and L. Dixon. LLM Compara-
tor: Visual analytics for side-by-side evaluation of large language models.
In Extended Abstracts of the CHI Conference on Human Factors in Com-
puting Systems (CHI EA ’24), 2024. doi: 10.1145/3613905.3650755 1

[31] S. Kim, J. Suk, S. Longpre, B. Y. Lin, J. Shin, S. Welleck, G. Neubig,
M. Lee, K. Lee, and M. Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. arXiv preprint
arXiv:2405.01535, 2024. 9

[32] T. S. Kim, Y. Lee, J. Shin, Y.-H. Kim, and J. Kim. EvalLM: Interactive
evaluation of large language model prompts on user-defined criteria. In
Proceedings of the CHI Conference on Human Factors in Computing
Systems, 2024. doi: 10.1145/3613904.3642216 5, 8, 9

[33] J. Li, S. Sun, W. Yuan, R.-Z. Fan, H. Zhao, and P. Liu. Generative judge
for evaluating alignment. arXiv preprint arXiv:2310.05470, 2023. 9

[34] Z. Li, X. Xu, T. Shen, C. Xu, J.-C. Gu, and C. Tao. Leveraging
large language models for NLG evaluation: A survey. arXiv preprint
arXiv:2401.07103, 2024. 9

[35] T. Liu, Z. Qin, J. Wu, J. Shen, M. Khalman, R. Joshi, Y. Zhao, M. Saleh,
S. Baumgartner, J. Liu, et al. LiPO: Listwise preference optimization
through learning-to-rank. arXiv preprint arXiv:2402.01878, 2024. 2

[36] Y. Ming, H. Qu, and E. Bertini. RuleMatrix: Visualizing and understanding

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/3613904.364201
https://doi.org/10.1145/2882903.291521
https://doi.org/10.1145/3490099.3511122
https://doi.org/10.1145/3491102.3501965
https://doi.org/10.1145/3025453.3026044
https://doi.org/10.1145/2858036.2858411
https://doi.org/10.1145/2858036.2858411
https://doi.org/10.1145/3641289
https://doi.org/10.1109/TVCG.2020.3030342
https://doi.org/10.1109/TVCG.2020.3030342
https://doi.org/10.1109/TVCG.2023.3346713
https://doi.org/10.1145/3640543.3645142
https://doi.org/10.1145/3640543.3645142
https://doi.org/10.1111/cgf.13972
https://doi.org/10.1109/VIS49827.2021.9623271
https://doi.org/10.1109/VIS49827.2021.9623271
https://cloud.google.com/vertex-ai/docs/generative-ai/models/side-by-side-eval
https://cloud.google.com/vertex-ai/docs/generative-ai/models/side-by-side-eval
https://doi.org/10.1109/TVCG.2020.3045918
https://doi.org/10.1109/TVCG.2020.3045918
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2022.3209466
https://doi.org/10.1109/TVCG.2022.3209384
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1145/3613905.3650755
https://doi.org/10.1145/3613904.3642216

classifiers with rules. IEEE Transactions on Visualization and Computer
Graphics, 25(1):342–352, 2019. doi: 10.1109/TVCG.2018.2864812 9

[37] P. Pirolli and S. Card. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In
Proceedings of International Conference on Intelligence Analysis, vol. 5,
pp. 2–4. McLean, VA, USA, 2005. 5

[38] C. Qian, E. Reif, and M. Kahng. Understanding the dataset practitioners
behind large language model development. In Extended Abstracts of the
CHI Conference on Human Factors in Computing Systems (CHI EA ’24),
2024. doi: 10.1145/3613905.3651007 2, 9

[39] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of machine learning research,
21(140):1–67, 2020. 8

[40] R. Sevastjanova, E. Cakmak, S. Ravfogel, R. Cotterell, and M. El-Assady.
Visual comparison of language model adaptation. IEEE Transactions on
Visualization and Computer Graphics, 29(1):1178–1188, 2023. doi: 10.
1109/TVCG.2022.3209458 9

[41] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization, pp.
364–371. Elsevier, 2003. doi: 10.1016/B978-155860915-0/50046-9 3

[42] H. Strobelt, B. Hoover, A. Satyanarayan, and S. Gehrmann. LMdiff:
A visual diff tool to compare language models. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP): System Demonstrations, 2021. doi: 10.18653/v1/2021.emnlp
-demo.12 9

[43] H. Strobelt, A. Webson, V. Sanh, B. Hoover, J. Beyer, H. Pfister, and A. M.
Rush. Interactive and visual prompt engineering for ad-hoc task adaptation
with large language models. IEEE Transactions on Visualization and
Computer Graphics, 29(1):1146–1156, 2023. doi: 10.1109/TVCG.2022.
3209479 9

[44] I. Tenney, R. Mullins, B. Du, S. Pandya, M. Kahng, and L. Dixon.
Interactive prompt debugging with sequence salience. arXiv preprint
arXiv:2404.07498, 2024. 9

[45] I. Tenney, J. Wexler, J. Bastings, T. Bolukbasi, A. Coenen, S. Gehrmann,
E. Jiang, M. Pushkarna, C. Radebaugh, E. Reif, and A. Yuan. The language
interpretability tool: Extensible, interactive visualizations and analysis for
NLP models. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP): System Demonstrations,
2020. doi: 10.18653/v1/2020.emnlp-demos.15 9

[46] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du, et al. Lamda: Language models
for dialog applications. arXiv preprint arXiv:2201.08239, 2022. 8

[47] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023. 2

[48] J. Wang, S. Liu, and W. Zhang. Visual analytics for machine learning: A
data perspective survey. IEEE Transactions on Visualization and Computer
Graphics, 2024. doi: 10.1109/TVCG.2024.3357065 9

[49] J. Wang, L. Wang, Y. Zheng, C.-C. M. Yeh, S. Jain, and W. Zhang.
Learning-from-disagreement: A model comparison and visual analytics
framework. IEEE Transactions on Visualization and Computer Graphics,
2022. doi: 10.1109/TVCG.2022.3172107 9

[50] Q. Wang, S. L’Yi, and N. Gehlenborg. Drava: Aligning human concepts
with machine learning latent dimensions for the visual exploration of small
multiples. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, pp. 1–15, 2023. doi: 10.1145/3544548.3581127 9

[51] Y. Wang, Z. Yu, Z. Zeng, L. Yang, C. Wang, H. Chen, C. Jiang, R. Xie,
J. Wang, X. Xie, et al. PandaLM: An automatic evaluation benchmark
for llm instruction tuning optimization. arXiv preprint arXiv:2306.05087,
2023. 9

[52] Z. Wang, J. Shang, and R. Zhong. Goal-driven explainable clustering
via language descriptions. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 10626–
10649, 2023. doi: 10.18653/v1/2023.emnlp-main.657 4, 9

[53] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and
J. Wilson. The what-if tool: Interactive probing of machine learning
models. IEEE Transactions on Visualization and Computer Graphics,
26(1):56–65, 2020. doi: 10.1109/TVCG.2019.2934619 9

[54] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu. A survey of visual
analytics techniques for machine learning. Computational Visual Media,
7:3–36, 2021. doi: 10.1007/s41095-020-0191-7 9

[55] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning test-
ing: Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, 48(1):1–36, 2020. doi: 10.1109/TSE.2019.2962027 7

[56] Z. Zhao, P. Xu, C. Scheidegger, and L. Ren. Human-in-the-loop extraction
of interpretable concepts in deep learning models. IEEE Transactions
on Visualization and Computer Graphics, 28(1):780–790, 2022. doi: 10.
1109/TVCG.2021.3114837 9

[57] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena. In Neural Information
Processing Systems (NeurIPS): Datasets and Benchmarks Track, 2023. 2,
3, 9

[58] R. Zhong, C. Snell, D. Klein, and J. Steinhardt. Describing differences
between text distributions with natural language. In International Confer-
ence on Machine Learning (ICML), pp. 27099–27116. PMLR, 2022. 4,
8

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3456354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1109/TVCG.2018.2864812
https://doi.org/10.1145/3613905.3651007
https://doi.org/10.1109/TVCG.2022.3209458
https://doi.org/10.1109/TVCG.2022.3209458
https://doi.org/10.1016/B978-155860915-0/50046-9
https://doi.org/10.18653/v1/2021.emnlp-demo.12
https://doi.org/10.18653/v1/2021.emnlp-demo.12
https://doi.org/10.1109/TVCG.2022.3209479
https://doi.org/10.1109/TVCG.2022.3209479
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.1109/TVCG.2024.3357065
https://doi.org/10.1109/TVCG.2022.3172107
https://doi.org/10.1145/3544548.3581127
https://doi.org/10.18653/v1/2023.emnlp-main.657
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1007/s41095-020-0191-7
https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1109/TVCG.2021.3114837
https://doi.org/10.1109/TVCG.2021.3114837

	Introduction
	Background: Automatic Side-by-Side Evaluation
	User Challenges and Design Goals
	User Challenges in Analyzing Evaluation Results
	Design Goals

	Visualization Design and Development
	Data used in Example Figure
	Interactive Table
	Visualization Summary
	Score Distribution
	Metrics by Prompt Category (when)
	Rationale Clusters (why)
	N-grams, Custom Functions & Precomputed Fields (how)

	Implementation
	System Deployment

	Usage Scenarios
	Understanding the Performance Gain
	Looking for Patterns from Less Successful Cases

	User Studies
	Observational Study Setup
	Key Usage Patterns
	Example-first deep dive
	Prior experience-based testing
	Rationale-centric top-down exploration

	User Survey

	Design Iterations and Updates
	Flexible Attribute Additions
	High-level Attribute Extraction using LLMs
	Multiple Rating Criteria

	Experiments for Rationale Clusters
	Related Work
	Qualitative Feedback and Limitations
	User Satisfaction
	Limitations and Future Work

