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Abstract
As large language models (LLMs) grow more proficient at pro-

cessing unstructured text data, they offer new opportunities to

enhance data curation workflows. This paper presents findings

from a user study involving 12 industry practitioners from various

roles and organizations across a large technology company (N=12).

The study examines their data curation workflows before and after

LLM adoption, using two custom design probes that integrate LLMs

into existing tools. Our study reveals a shift from heuristics-driven,

bottom-up curation to insights-driven, top-down workflows sup-

ported by LLMs. To navigate increasingly complex data landscapes,

practitioners supplement traditional subject-expert-created “golden

datasets” with LLM-generated “silver” datasets and rigorously val-

idated “super golden” datasets curated by diverse experts. This

research highlights the transformative potential of LLMs in large-

scale analysis of unstructured data and highlights opportunities for

further tool development.
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1 Introduction
As large language models (LLMs) continue to advance, their im-

proved reasoning capabilities, enhanced summarization techniques,

and growing context windows enable them to process and gener-

ate insights from complex and voluminous data more effectively

than ever before [7, 25, 37–39, 46, 49]. These advancements present

significant opportunities to improve data curation and analysis

workflows, particularly for those working with unstructured, text-

based datasets. At the same time, the complexity of such data has

grown. Modern foundation models increasingly rely on text data

throughout their pipelines, including pre-training, fine-tuning, hu-

man feedback, and evaluation [12, 38–40]. With data coming from

increasingly diverse sources, such as LLM-generated content, cu-
rating it—ensuring its quality, coherence, and relevance through

iterative refinement and evaluation—becomes even more critical

and challenging, as reported by recent work [10, 14, 21, 23, 30, 48].

Motivated by these increasing capabilities and complexities, we

contribute design probes and a user study (N=12) to explore the

opportunities and challenges of adopting LLM-based workflows.
1
.

Building on expert interviews that examined data practitioners’

existing workflows [34], we incorporated feedback into develop-

ing two LLM-based design probes to address reported data cu-

ration challenges. Our study investigates how practitioners use

these probes for data curation tasks – that is, actions performed

on general, unstructured text-based datasets, such as user feed-

back, conversation logs, or customer survey responses, to generate

insights. Key findings from our study include:

• Emergence ofmulti-tiered dataset hierarchies: The adoption
of LLMs in data labeling tasks has introduced new dataset hier-

archies. Practitioners supplement traditional “golden datasets”—
high-quality datasets for model training and evaluation—with

“silver datasets,” which primarily consist of LLM-generate labels.

This aligns with findings that recent models rely on generated

and synthetic training data [5, 22]. However, benchmarking

1
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LLMs against human performance demands rigorous evaluation

datasets, motivating the construction of “super-golden datasets”—
exceptionally high-quality datasets curated by teams of experts.

• Shift from bottom-up to top-down data understanding:
Prior to LLMs, practitioners aggregated insights from granular,

heuristics-based analyses, performing manual and repetitive data

labelling and aggregation. Using LLMs, practitioners can focus on

more strategic, high-level data analysis – generating high-level

summaries upfront, and diving into details only when needed.

Additionally, we observed a growing trend of LLM reliance across

multiple stages of the curation and analysis workflow, with a per-

ceived increase in efficiency. However, there are also challenges

and concerns hindering LLMs’ widespread adoption, such as cost

and output reliability. This research contributes to understanding

the emerging role of LLMs technical workflows and offers consid-

erations for further LLM-based tool development and evaluation.

2 Related Work
There is a growing trend of integrating LLMs into tools for data

curation tasks [15, 36, 49]. Numerous prompting interfaces and

bespoke LLM-based tools have emerged [8, 23, 24, 26, 28, 29, 31, 32,

42], addressing tasks such summarization and categorization. LLMs

can be used to interactively cluster datasets [41], explain and label

these clusters [44], qualitatively code and analyze data [4, 6, 11], and

even expand existing datasets by generating synthetic examples

[22, 45, 47]. Furthermore, researchers have proposed leveraging

LLMs to evaluate the performance of models, a practice known

as “LLM-as-a-judge” [49], along with tools that visualize results

[16, 17]. This approach can be applied not only to assessing general-

purpose LLMs but also to evaluating specific aspects such as safety,

factuality, coherence, fluency, or other evaluation criteria [15, 19].

3 User Study Design
Despite the recent emergence of LLM-focused tools, there is limited

research examining their adoption in industry data practices, likely

due to the nascent nature of the technology [48]. To address this

gap in understanding LLM integration in technical workflows, we

conducted a user study with industry professionals who perform

diverse data curation tasks, with the following research questions:

• RQ1: In what ways are LLMs being used by practitioners for

data curation tasks?

• RQ2:What aspects of their workflows do practitioners feel are

made more productive by LLMs?

• RQ3: Which parts of workflows do LLM-based tools support,

and which tools do they replace or complement?

3.1 Design Probes
Our research questions focus on understanding participants’ exist-

ing and anticipated workflows with LLMs. However, recent prior

work on the data curation workflows of industry practitioners

suggests a lack of alignment regarding LLM-based curation tools,

with practitioners continuing to rely on spreadsheets (e.g., Google

Sheets) and Python notebooks (e.g., Colab
2
) [35].

2
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To foster ideation using tools that practitioners already trust and

use, we created two design probes integrating LLMs - one within

Google Sheets, and another within Colab. These probes harness

LLM capabilities to address common curation challenges identified

in prior work, such as flexibility, ease-of-use, and integration [2, 35].

3.1.1 Spreadsheet Design Probe. We developed an Apps Script

application
3
that enables LLM prompting within spreadsheet cells

(Figure 1). This application introduces a “RUN_PROMPT” function

that sends a text prompt to an LLM model, with customizable API

parameters in a separate sheet.

3.1.2 Computational Notebook Design Probe. We developed a Co-

lab notebook with built-in libraries for LLM prompting, with config-

urable parameters through form fields. Figure 2 shows the example

notebook. The library includes a “run_classifier” function that

accepts a Pandas dataframe (i.e., df) and an instruction. The func-

tion calls the LLM and returns the dataframe with an additional

column containing the LLM’s outputs. Since Python notebooks of-

fer greater flexibility than spreadsheets. We provide two additional

features:

• Summative analysis: Users can query the LLM with an entire

dataset (Figure 3).

• Controlled generation: This feature allows structured outputs

[20, 23] (e.g. yes or no) for tabular queries.4 In the spreadsheets

probe, controlled generation can only be approximated with the

inclusion of instructions in the prompt such as Please output only
“yes” or “no”.

3.2 User Study Participants
We recruited 12 participants (N=12; 5 female, 7 male) who work

with text-based datasets within a large technology company. Our

focus was on recruiting participants who handle general text-based

data– such as customer feedback or conversation logs– rather than

specialized domains like medical data, which may require bespoke

and less generalizable curation practices. Our study sample was

carefully curated to include industry experts across different job

roles and six distinct product areas within the company. We cate-

gorize these participants into three roles:

• Technical roles (T1–T4): Engineers and model developers who

create and evaluate models for products.

• Analytical and operational roles (A1–A5): Domain experts,

ethics researchers, and project leads who develop policies around

products, primarily focused on safety.

• Client-facing roles (C1–C3): User experience researchers and
survey experts who assess product usability.

These practitioners’ roles involve extracting insights from text

data, including tasks such as labeling text to identify trends, sum-

marizing findings, developing training and evaluation datasets for

foundational model development, or analyzing user notes for abuse

detection. A detailed description of their job responsibilities can be

found in Appendix A.

3
https://developers.google.com/apps-script

4
https://ai.google.dev/gemini-api/docs/structured-output?lang=python, https://spec.

openapis.org/oas/v3.0.3#schema
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Figure 1: The tabular LLM prompting interface within the spreadsheet design probe. The cells in columnA include conversations
(i.e., questions to AI agents asked by crowd users) from the Chatbot Arena Conversation Dataset [27]. The header of the second
column (B1-B3) contains an instruction that users of the probe can specify. The cells in the column are automatically populated
with LLM outputs, generated by running an LLM query that combines the specified instruction from the header with the
corresponding data in column A (e.g., =RUN_PROMPT(CONCATENATE(B1, B2, B3, A8))). Column C shows another prompt.

3.3 User Study Protocol
We conducted individual, hour-long sessions with the participants

via video conferencing. At the beginning of the session, each par-

ticipant received a dedicated copy of both the spreadsheet and

notebook design probes (Figures 1, 2, and 3), which contained an ex-

cerpt of 100 entries from the Chatbot Arena Conversation Dataset.
5

Each session began with a brief interview to understand the

participant’s use case and background, followed by an introduction

and tutorial on the design probes. Participants then shared their

screens for real-time observation. They explored and explained their

current approaches to curation tasks such as summative analysis,

categorization, and numerical analysis. Discussions focused on

existing workflows, the current and potential role of LLMs, and

how interfaces like the design probes might fit into their workflow.

Participants were encouraged to think aloud as they interacted

with the spreadsheet and notebook probes. There was no fixed time

allocation for each probe, and participants were free to move back

5
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations

and forth between them as needed. To analyze the transcripts, three

researchers then developed a coding scheme for thematic analysis

[3], and refined themes based on these codes [1, 13]. The study was

approved by our institution’s IRB.

4 Results
4.1 RQ1: Data curation tasks using LLMs
Participants valued the flexibility of LLMs and reported utilizing

LLMs across a variety of generalized curation tasks, such as:

• Classification: Prior to adopting LLMs, participants reported

relying upon wordlists, manual searches, and regular expres-

sions for classification tasks. These methods were prone to errors

caused by missing typos, acronyms, translations, or synonyms.

Furthermore, these methods were limited to only the wordlists

that were either manually curated by experts or generated by

existing tools like safety classifiers. LLMs offer a valuable alter-

native for classification tasks where pre-existing classifiers are

not available.

3
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Figure 2: The tabular LLM-based prompting interface within the notebook design probe. This example shows a new tone
column added to a dataframe, which asks “What is the tone of this text?” on the prompt column. Outputs are not constrained.
The output dataframe with the new tone column is displayed below the form.

“We can use such prototypes [in situations] when I’m not aware
of a good classifier. . . [such as] cases like ‘what types of medical
advice may cause a specific problem?”’ —A5

• Summarization and aggregation: Without LLMs, practitioners

identified summative trends in unstructured text datasets by

manually labelling data points and then aggregating them. Using

LLMs, practitioners could directly generate labels, or even prompt

for insights on their desired trend (e.g. “What are the top themes

in this dataset?”).

• Explanation generation: Participants found LLMs to be a valu-

able tool for generating additional context. For example, in a

moderation use case, participants found LLM responses helpful

for explaining why certain content was flagged by users as viola-

tive. Reviewers reported LLM assistance as particularly useful

in scenarios involving language barriers or the need to detect

subtle biases that require deeper contextual understanding.

• Distributional analysis and outlier detection: Participants
also noted that LLMs could be useful in expediting slicing and

filtering processes to identify outliers and anomalies. This is

particularly useful in content moderation or safety evaluation,

especially with large datasets that are impractical for humans to

review in their entirety. LLMs can be used to identify candidate

data points that require more resource-intensive processes, such

as human review. By helping analysts to “surface more interesting
things to look at” (A4), LLMs allows humans to allocate their

expertise and attention more efficiently.

“The LLM can often do things often not as good as a human
[expert] but very close. . . that’s one more layer we can put on
top before it gets to the human. [LLMs can [filter] out a lot of
the obvious false positives that are difficult for a regex or a
classifier, but a human would obviously understand.’

—A3

More specific examples of applied data curation tasks across a

variety of use cases are reported in Appendix B.

4.2 RQ2: LLMs’ perceived productivity
improvements

Participants additionally provided feedback on the perceived impact

of LLMs on their productivity across three dimensions: accuracy, ef-

ficiency, and satisfaction [9]. Their imprressions of LLMs’ impact on

accuracy were mixed. While some cited anedotal evidence that rat-

ing, labelling, clustering, and analysis tasks completed using LLMs

4
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Figure 3: The summative LLM-based prompting interface within the notebook design probe. The example illustrates querying
“What is this dataset about?” for the prompt column of a dataframe.

performed comparably to humans – and in some cases, showed

higher inter-rater agreement – this might be partially attributed to

LLMs’ self-consistency [43].

“[We ran a] manual inter-rater reliability exercise. . .we
slightly agreed more with human codes (compared to
LLMs), but the agreement metrics were only 60%, 70%.
This tells us that [accuracy wasn’t high to begin with]
. . . so I wanted to get out of the business of coding.”

—C2, on using LLMs for survey coding

Participants agreed that LLMs provided significant efficiency
gains, particularly for repetitive coding tasks. Tasks that previously
took hours could be completed in minutes, freeing up time for

higher-level tasks like refining taxonomies and reviewing policies.

“What’s important to me is. . .what can I do to speed
up the workflow? I’m trying to make it more efficient
and faster for someone to create a prompt that allows
you to go from 80% precision/80% recall to 90/90 [on
my classification task]. . .My goal is to go from zero to
essentially a fully functional classifier in hours.” —A1

While satisfactionwith the Python notebook LLM design probe

was limited to participants with technical backgrounds, all partici-

pants expressed satisfaction with the spreadsheet probe, noting

its low learning curve and ease of collaboration.

“I can train other people up on it very easily, whereas
there’s a [learning curve] for Colab. I’m working with
other analysts who aren’t as technical. . . so I’m trying
to use tools that are easier for other people.” —A2

LLMs’ lower barrier to entry can improve collaboration:
Participants highlighted the importance of embedding LLMs in

familiar platforms for seamless collaboration. While many teams

had developed LLM tools within Python notebooks, these solutions

were often developer-centric and limited in the context of cross-

functional teams. The spreadsheet probe was praised for improving

accessibility and reducing the need to convert outputs for non-

technical collaborators, fostering a more collaborative workflow.

“My product manager doesn’t use LLMs for things that
they could. . .we have to run things in Colab and share
them with the [PMs] and go back and forth.” —T2

4.3 RQ3: LLMs’ role in workflows – benefits and
limitations

Participants reported that they would use LLMs within the spread-

sheet probe for analysis on smaller datasets. For handling larger

amounts of data or more complex tasks, such as concatenating

outputs from multiple columns or building automated workflows,

participants showed a clear preference for the notebook probe. Par-

ticipants cited scalability and latency as limitations of LLM-based

methods, although these concerns may be reduced as the technol-

ogy advances.

Barriers to adopting LLM-based tooling more broadly include the

fast-evolving nature of the field, stability, and reliability concerns. A

few participants cited that they had not considered using LLMs for

tabular data analysis before because large-scale analysis was only

recently supported. For example, S1 explained that “It didn’t occur
to us to [use LLMs]. . . the long context [capabilities] are new.’ For tasks
involving sensitive content, safety-tuned responses by pre-trained

modelsmay be insufficient [33]. Finally, participants hesitated to use

LLMs for tasks requiring precise, deterministic outputs, particularly

where hallucinations or biases would be unacceptable:

“I would never use quotes spit out by the LLM as exam-
ples. . . I would go pull it myself.” —A1

Despite these limitations, participants reported that LLMs were

broadly and rapidly utilized within their teams, re-defining both

data curationworkflows and the hierarchies of unstructured datasets.

We discuss these trends in the following section.

5
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5 Discussion
5.1 Emerging Workflow Trends
5.1.1 From bottom-up aggregation to top-down extraction. Tradi-
tionally, practitioners have performed bottom-up data analyses.

They label and categorize individual data points, and then aggre-

gate them to identify trends [35]. LLMs now upend this process,

allowing practitioners to gain high-level insights from the start,

extracting individual data points only when granular analysis is

needed. However, as users grow more accustomed to incorporating

LLMs for this purpose, there is a risk that this adoption may lead

to a decrease in the rigor of validation processes.

“If [you were] a new team going straight to LLMs, there’s
a risk that you don’t know when things are off. When I
saw strange words [in an LLM summary], I did a data
pull to verify that this was wrong. I deeply [knew that
the summary was wrong] already because I’ve read
through so much of [the data] before.” —C3

5.1.2 Expanded scope for data practitioners. LLM usage is also

reshaping the role of data practitioners. While some roles involving

data gathering and manual coding may be increasingly automated,

experts such as policy analysts and safety analysts reported using

LLMs to expand the scope of their work. Previously, collecting

data labels and annotations took weeks, requiring experts to define

labeling rules and wait for human annotators to execute them. Now,

LLMs enable a much faster understanding of th edata, streamlining

the process.

“Prior to the advent of using LLMs, I was more of a
consumer of data provided by others, as opposed to
having the ability to create and identify the data that I
was using.’ —A2

5.2 Emerging Dataset Hierarchies
Traditionally, “golden datasets,” meticulously labeled by human

experts, have been a standard of data for model training and eval-

uation. However, participants reported that the capabilities of LLMs

have enabledmore sophisticated tiers of small, high-quality datasets:

(1) Silver datasets: While human-labeled “golden” datasets re-

main crucial, there is a growing trend to complement them

with “silver” datasets generated by LLMs, particularly for high-

stakes labeling tasks.

“We would never use LLMs to classify the entire [data] corpus
of hundreds of millions of instances. . .However, we’re cur-
rently trying zero-shot/few-shot prompting to complement
our classifications on important [data instances]. We’d still
have golden output by human raters, but complemented with
a silver output by LLMs for the high-traffic data, and a cheap
and flexible classifier for the remaining data.’ —A1

(2) Super-golden datasets: Comparing LLMs to human perfor-

mance necessitates even more rigorous ground-truth. “Super

golden data” are created by diverse teams of experts including

product managers, policy makers, and engineers. They are crit-

ical for fine-tuning and evaluating LLM performance; However,

developing these super-golden datasets is both time-consuming

and resource-intensive, often taking on the order of weeks.

“It’s very expensive to compare an LLM with humans because
where is the ground truth coming from? You need a higher
authority of human rater, like super golden labels. It’s a mix
of product managers, policy makers, and [engineers] from
our team. It takes a long time to label even 500 examples.’
—T4

5.3 Future Work and Directions
Our findings on emerging trends in workflows and dataset for-

mation highlight several promising directions for future research.

Below, we outline critical areas for further exploration and action-

able guidance based on our study.

Safety and dataset evaluation. The growing use of silver datasets
– datasets curated by practitioners using LLM-generated labels –

raises concerns about quality and bias. Validation processes must

evolve to ensure reliability, similar to how safety and responsibility

efforts seek to validate LLM outputs. Future research should explore

methods for verifying classification results, such as conducting

error analysis, auditing for potential biases and stereotypes, and

maintaining diversity within these datasets.

As the outputs of LLMs may be opaquely generated, integrat-

ing human-in-the-loop workflows will ensure better validation,

reliability, and quality control. HCI will be essential in designing ef-

fective oversight mechanisms to enhance interpretability and trust

in LLM-generated data.

Evolving paradigms. We anticipate that the current emphasis on

creating small, high-quality datasets will remain a focus for the

foreseeable future. The current approach to refining the existing

“golden” dataset paradigm has resulted in a complex landscape that

includes variations such as silver and super-golden datasets, and

this space of data will likely grow.

With increasing oversight, privacy concerns, and fairness priori-

ties, dataset development trends will likely continue to shift from

bottom-up to top-down approaches, addressing predefined policies

and target distributions.

5.4 Study Limitations
This study was conducted within the context of a single company,

utilizing specific internal infrastructures and particular cultural and

operational practices. While our study utilized a diverse popula-

tion across many company organizations, and the findings aligned

with prior research [18], further work is needed to validate their

generalizability.

Furthermore, the scope of this work was constrained to indi-

viduals primarily involved in generalized, largely analytical data

curation tasks. This may not capture the full range of experiences,

including those of specialized data practitioners working with

domain-specific datasets (such as medical or biological data) or

data of different modalities, and data workers and crowd workers,

whose work also involves text-based datasets.

6 Conclusions
We undertook this study to understand the opportunities of incorpo-

rating LLM-based methods into data curation workflows. However,

it quickly became clear that the question was not if practitioners

6
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were open to using LLMs, but rather, how. We observed a rapidly

growing reliance on LLMs for a wide variety of tasks, such as

classification, summarization, explanation, and outlier detection,

especially in cases where efficiency is prioritized. LLMs are enabling

practitioners to move away from heuristics-based, bottom-up data

aggregation and toward insights-first, top-down analyses, marking

a fundamental transformation in how practitioners engage with

their data. This shift underscores the need for robust definitions

and frameworks for evaluating data quality.

As the landscape evolves, we anticipate a shift toward more sys-

tematic, policy-driven dataset creation, with human-in-the-loop

workflows ensuring transparency and quality. This progression

could lead to “super-golden” datasets—small yet highly refined

collections that set new standards for data curation in the era of

foundation models. At the same time, the use of of LLM-curated "sil-

ver" datasets introduces concerns about quality, bias, and validation.

Silver datasets require robust error analysis and auditing to ensure

diversity and fairness. As LLMs become integral to data workflows,

human oversight will remain essential for ensuring transparency,

accountability, and reliability in data-driven insights.
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A Study Participants
Table 1 describes the participants recruited for this user study, as well as their responses to a screening survey. Participants evaluated their

familiarity with relevant tools (spreadsheets, Colab, Python) on a five-point scale to provide context for their usage patterns. Python and

Colab usage were less common in client-facing roles but prevalent in technical and analytical roles. Notably, Colab was utilized by some

participants without extensive Python experience.

Table 1: Descriptions of participants in the user study (N=12).

Participant Product Area Job Description Tool Familiarity
Sheets Colab Python

[T] Technical roles

T1 Foundation models Evaluates prompt expansion text generation models 5 5 5

T2 Foundation models Inspects text-datasets for LLM post-training 5 5 5

T3 Foundation models Works on post-training a variety of LLM models 4 4 5

T4 Content platforms Builds safety classifiers for content 5 5 5

[A] Analytical / operational roles

A1 Trust & safety Works on detecting abuse content at scale across products 4 4 1

A2 Trust & safety Develops golden datasets for scaled abuse detection 4 4 2

A3 Content platforms Analyzes user notes to detect violative content 4 4 3

A4 Responsible AI Analyzes and creates safety datasets for text-to-image generation 5 5 4

A5 Responsible AI Designs evaluation metrics of datasets 3 3 4

[C] Client-facing roles

C1 User experience Analyzes behavioral survey data for product users 5 1 1

C2 User experience Evaluates custom feedback survey data for accounting teams 5 2 2

C3 User experience Develops customer-facing feedback surveys 5 2 2
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B Reported Use Cases

Table 2: Participants’ current and anticipated LLM usage cases within their product areas.

Product Area,
Participants

Description LLM Usage and Examples

Foundation models

T1, T2, T3

T1, T2, and T3 curate data for training, fine-

tuning, and evaluating LLMs on a variety of

use cases, such as safety evaluation and image

generation.

Summarization:
“Which topics are extremely prevalent in this dataset?”

Distributional analysis:
“How diverse are the responses generated by raters?”

“Are these prompts duplicates or near-duplicates?”

Categorization:
“There are 10 categories: scientific, factuality, writing. . .which categories

fit this prompt?”

“Is this prompt about a person? Yes, no, or maybe?”

Trust & safety

A1, A2

A1 and A2 are policy experts who create golden

datasets of carefully curated violative content,

such as hate speech or violent extremism, to

detect abuse at-scale across products.

Summarization:
“Here’s a dataset of user comments. Please cluster them, give a descrip-

tion of what’s in the cluster, and examples from the cluster itself, in the

style of a business analyst.”

Categorization:
“Was the third-party vendor who flagged this content as violating a

policy correct?”

Probabilistic classification:
“What is the probability of this text violating the policy?”

Distributional analysis / Explanation:
“Identify things [in this text] that violate [these policies], explain why.”

Content platforms

A3, T4

A3 and T4 build safety policies and classifiers

around violative content, using text-based data

such as captions, content metadata, and user

commentary.

Classification:
“Does this content have violative content in it?”

“Is this classification safe, risky, or unsafe?”

“Is the report on this content actionable?”

Explanation:
“Why was this content considered harmful?”

Responsible AI

A4, A5

A4 and A5 create and analyze safety evaluation

datasets for downstream tasks such as model

safety evaluation. Their work may include de-

signing metrics or interacting with rater pools.

Summarization:
“What are the top violative themes in this dataset?

Classification:
“Is this text about kids?”

“Here are 5 policies: which might this violate?”

“On a scale of 1-10, what is the complexity of this prompt?”

Text generation:
“What are some synonyms for this sensitive term?”

User experience

C1, C2, C3

C1, C2, and C3 develop client-facing surveys

to evaluate a broad range of products. They in-

teract with large-scale survey responses and

operational metrics, and report insights to lead-

ership.

Summarization:
“What are the top 5 issues that customers have mentioned?”

Classification:
“Which of the 100 products is this feedback addressing?”

“What theme fits this open-ended survey response?”

“Is this feedback positive or negative?”

Extraction:
“Pull quotes that add context to each theme.”

“Which of the data is about networking issues?”
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