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ABSTRACT 
Developers perform online sensemaking on a daily basis, such as 
researching and choosing libraries and APIs. Prior research has 
introduced tools that help developers capture information from 
various sources and organize it into structures useful for subse-
quent decision-making. However, it remains a laborious process 
for developers to manually identify and clip content, maintaining 
its provenance and synthesizing it with other content. In this work, 
we introduce a new system called Crystalline that automatically 
collects and organizes information into tabular structures as the 
user searches and browses the web. It leverages natural language 
processing to automatically group similar criteria together to re-
duce clutter, and uses passive behavioral signals such as mouse 
movement and dwell time to infer what information to collect and 
how to visualize and prioritize it. Our user study suggests that 
developers are able to create comparison tables about 20% faster 
with a 60% reduction in operational cost without sacrifcing the 
quality of the tables. 

CCS CONCEPTS 
• Information systems → Decision support systems; • Soft-
ware and its engineering → Software design tradeofs; • Human-
centered computing → Graphical user interfaces. 
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1 INTRODUCTION 
Developers spend a large portion of their time searching and making 
sense of the web for solutions to their programming problems 
[9, 108]. In many cases, the answers to such problems are not limited 
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to a single solution, but developers discover that there are multiple 
legitimate options, and they must identify relevant criteria and 
constraints based on their unique contexts and carefully consider 
the trade-ofs among those possible options [42, 63, 77, 78, 81, 82, 92, 
94, 100, 107]. For example, when converting an old web application 
to use a modern JavaScript front-end framework, React.js [34] (with 
its ability to be progressively adopted into existing code bases) may 
be more suitable when one wants to gradually convert each separate 
module while minimizing the overall system downtime, whereas 
a more comprehensive framework such as Angular [47] might be 
a better choice if one wants to take advantage of various ofcial 
utility packages like routing [44], animation [45] and data validation 
[46]. 

There have been many commercial and research tools and sys-
tems that try to help people make sense of information about trade-
ofs to facilitate further decision making, such as by helping with 
easily capturing snippets of information [1, 5, 53, 110, 121] from 
web pages or organizing and synthesizing information into useful 
schema and representations [15, 29, 61, 71, 81, 122]. For example, 
one common practice that people employ is copying pieces of text 
as well as taking screenshots and putting them in a running Google 
Doc as they search and browse the web [88]. One system that is 
relevant to the context of programming is Unakite [81], which en-
ables developers to collect and organize information online into 
comparison tables with options, criteria, and evidence to help with 
making decisions (see Figure 2). 

However, even with the above tools, it remains a challenging pro-
cess for developers to manually identify and capture the relevant 
content, maintain its provenance (where it came from), and synthe-
size it with other content. Prior work suggests that one cause is that 
people are often uncertain about which information will eventually 
turn out to be relevant, valuable, and worth capturing, especially 
at early stages of their learning and exploration when they are 
overloaded with information [4, 37]. Under these circumstances, 
people are hesitant to frequently pause and shift their focus from 
the investigation itself to reasoning about what to capture for later 
use [14, 58, 72, 109], or they could be too engaged in the sensemak-
ing process and forget to collect anything at all. Indeed, research 
suggests that interactions for gathering information while perform-
ing active reading need to be quick and low efort, otherwise people 
tend not to capture information in the frst place [58, 81, 85, 118]. 
In addition, though existing tools provide users with the fexibility 
and agency to synthesize the collected information into useful rep-
resentations, such as comparison tables [15, 81] or knowledge maps 
[87], developers still need to perform these organizing operations 
manually. This is often a laborious process, as developers need to 
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Figure 1: Crystalline’s list view UI (a). As the developer browses a web page (b), Crystalline attempts to automatically collect
options and criteria from the page, and display them in the options (c) and criteria panes (d) in the sidebar (a). In addition,
Crystalline leverages natural language processing to automatically group similar criteria together, as shown by the multiple-
pages icon (e). Crystalline uses behavioral signals such as mouse movement and dwell time to try to automatically detect the
relative importance of the criteria (shown by the display order, with most important at the top). Users can use the “See more”
and “See less” buttons (g) to adjust howmany criteria are to be displayed at once. Crystalline will remind users of the existence
of additional related evidence through a red notification dot at the top right of a criterion (f). The sidebar can be toggled in
and out by clicking the browser extension icon (h). Users may pin (i) important criteria to the top of the list.

take stock of all the pieces of information, identify connections
among them, and directly manipulate the representation to reflect
the connections.

Another challenge reported in prior work is that developers’
needs for collecting and organizing information are often not dis-
covered until part of the way through an investigation process
[16, 81]. This could be due to several major reasons, including but
not limited to: 1) additional external requirements, constraints, or
user feedback are discovered or introduced in themiddle of a project
which significantly complicates the original decision making prob-
lem [23, 30, 31]; 2) developers discover many more options, criteria,
and their trade-offs than they anticipated at the beginning [81];
and/or 3) developers are required to explain or document their deci-
sions and design rationale after the fact for the long-term maintain-
ability and success of a software project [25, 39, 75, 76, 79, 104, 112].
In these situations, it is hard and involves duplicate work for devel-
opers to recall and retrace their steps for reaching their current state

of sensemaking (the linear history visualization in almost all cur-
rent browsers is known to be not particularly effective [16, 67, 124])
and recollect all the relevant evidence again.

In our new work, we explore the idea of having a system dy-
namically help users keep track of and organize information by
leveraging the content they are browsing and the signals from their
browsing behavior. Although we focus on the domain of program-
ming due to strongly motivating prior work and ease of prototype
development due to regularities of the programming context, our
work may also generalize to other sensemaking contexts on the web.
We instantiate this idea in a prototype system called Crystalline,1
which is an extension to the Chrome web browser. Crystalline plays
the role of a user’s copilot and attempts to automatically identify
and keep track of the options, criteria, and the corresponding ev-
idence snippets from the web pages that a user has viewed, and
organize the snippets into both list and tabular formats. To achieve

1Crystalline is named after rocksmade up of interlocking crystals. It stands forClipping
Resulting in Your Structure as Tables And Lists Linked to Implicit Notetaking Easily.
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this, Crystalline mines a variety of behavioral signals while a user 
browses the web, including scrolling patterns and mouse cursor 
actions, and employs natural language understanding techniques 
to automatically classify and organize the collected content. The 
goal is that users can focus more on reading and understanding 
web content while occasionally guiding the system when it makes 
mistakes. We conducted a user study to evaluate the usability and ef-
fectiveness of Crystalline compared to Unakite as a baseline, which 
found that developers are able to build comparison tables about 20% 
faster with a 60% reduction in operational cost without sacrifcing 
the quality of the tables. In particular, it only requires around 12% 
of the total task completion time for participants to use the tool to 
build and maintain a table, compared to around 30% in the baseline 
condition. 

The primary contributions described in this paper include: 
• evidence that it is possible to automatically identify options, 
criteria, and relevant evidence from web pages that a user 
is browsing using a set of natural language understanding 
heuristics, 

• a set of implicit behavioral signals that users exhibit when 
browsing the web which can be used for prioritizing and 
fltering that collected information, 

• a prototype system called Crystalline that integrates the 
heuristics and signals to automatically collect and organize 
viewed information into list and comparison table views for 
subsequent decision making, 

• an evaluation that ofers empirical insights into the usability, 
usefulness, and efectiveness of those signals and the system. 

2 RELATED WORK 

2.1 Sensemaking in Software Development 
Sensemaking is widely considered to be the process of searching, 
collecting, and organizing information to iteratively develop a men-
tal model that best fts the evidence [96, 106]. As knowledge workers 
[9], many activities that developers perform on a daily basis involve 
extensive sensemaking, such as designing the overall software ar-
chitecture [56, 83], learning and understanding unfamiliar code and 
concepts [26, 73], debugging and fxing incorrect software behaviors 
[25, 74], planning and executing code refactorings [32, 41, 86], and 
evaluating past code and design patterns for future reuse [82, 91]. 
In this work, we focus on the particular type of sensemaking activ-
ity where developers leverage web resources to make a decision to 
solve their programming problem [9, 63]. Here, developers not only 
need to fnd information pertinent to their problem [8, 59, 97, 115], 
which is the frst step in such complex sensemaking tasks [106, 123], 
but also collect and synthesize relevant information into structured 
knowledge so that they can make progress towards fully under-
standing the decision space [53, 71, 72, 81]. Indeed, our survey [63] 
revealed that over half of the questions asked on Stack Overfow 
contain answers with multiple options, each option valuable to 
the programming community due to a unique set of criteria that it 
fulflls. 

Software engineering research has also identifed that subse-
quent developers frequently need help with understanding the 
rationale of design decisions and code implementations made by 
previous developers [75, 76, 112]. This can be particularly difcult 

if the previous developers failed to properly document the rationale 
[120], or the documentation was incomplete or not up-to-date [38]. 
Granted, the fundamental challenge here is that it is efort- and time-
intensive for decision authors to document their rationale (either 
in situ or after the fact) with little immediate payof for themselves 
[42]. Our previous Unakite tool [81] addressed this challenge by 
encouraging authors to document their decision making processes 
and results using the tool’s lightweight collecting and organizing 
features. Building on top of this, Crystalline further transforms the 
previously active capturing and organizing work [5, 81, 110] into 
passive monitoring and error-fxing [80], which has been shown to 
present a much lower entry barrier for people to start contributing 
[37]. 

2.2 Tools for Collecting and Organizing 
Information 

To help people more efectively gather and process online informa-
tion, systems and tools like SenseMaker [3], SearchPad [5], Hunter 
Gather [110], CoSense [93], Tabs.do [16], as well as commercial 
systems like the Evernote clipper [33], enable people to take entire 
pages or snippets of content from the web, classify them, and later 
put them together into a document with a coherent narrative for 
sensemaking, decision making or sharing and collaboration. How-
ever, one common characteristic of these tools is that it is mostly the 
user’s responsibility to manually complete the information collec-
tion, triage, and organization process, while we attempt to do this 
automatically with Crystalline as the user searches and browses 
the web. 

Other threads of prior research have explored diferent ways 
for machines to help during sensemaking, which inspired and in-
formed our design. For example, systems like Entity Quick Click 
[6, 66, 116] employ techniques like named-entity recognition [84] 
to pre-process and highlight semantically meaningful entities in 
web content, and enable users to collect and annotate relevant in-
formation with a single click. Previous work like Thresher [60] 
and Dontcheva et al.’s personal web summarization tool [29] let 
users annotate and curate patterns and templates of information 
that they would like to collect on a few example web pages, then 
automatically collect them from future pages. In addition, Chang 
et al.’ Mesh system [15] automatically retrieves relevant consumer 
product facts and reviews from Amazon into a comparison table 
to enable users to curate and explore nuanced options and criteria. 
These systems have largely relied on natural language understand-
ing to analyze and transform the web content that users browse 
and read, while we argue that leveraging the signals from users’ 
natural browsing behavior, such as dwell time and cursor move-
ments, would unlock a new design space for automated machine 
support during online sensemaking, motivating us to use both NLP 
heuristics and passive behavioral signals to infer what information 
to collect and how to visualize and prioritize it in Crystalline. 

2.3 Implicit Behavioral Signals When Using 
the Web 

Prior research has investigated various implicit behavioral patterns 
that people exhibit when reading and interacting with content on a 
digital screen. One thread of research has explored using behaviors 
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Figure 2: Unakite’s user interfaces. With Unakite, a developer collects snippets by selecting the desired content (a1) or by
dragging out a bounding box around the desired content (while holding the Option / Alt key) (a2) and clicking the “Save to
U” button. The collected snippets will show up under the “Uncategorized” tab in the snippet repository (c) inside the Unakite
sidebar (e). The developer can drag a snippet and drop it in one of the cells in the comparison table (b), and mark whether it
is positive (green thumbs-up) or negative (red thumbs-down) or just informational (yellow “i”). (f1-f3) show the details of the
three parts of each cell in the table where the snippet can be dropped. This figure is adapted from [81]. For full details, see
[81].

such as dwell time, cursor movements, clicks, scrolling patterns,
and gaze positions as implicit signals to approximate user interest
on web pages as well as search result relevance [22, 50, 51, 57, 65].
For example, Claypool et al. [22] had participants use a custom-built
browser to surf the web and concluded that the time spent on a page,
the amount of scrolling on a page, and the combination of time
and scrolling had a strong correlation with explicit user interest. In
addition, Hijikata [57] discovered that actions such as text tracing
and link pointing are decent behavioral indicators for perceived
interesting segments of web pages. Similarly, in the domain of web
searches, Buscher et al. [10–12], Guo and Agichtein [50, 51], and
Huang et al. [65] demonstrated that eye tracking, as well as inter-
actions like scrolling and cursor hovers, could accurately predict
user interests in search results pages.

Building on the empirical understanding laid out by this research,
in this work, we explore putting a combination of these implicit
behavioral signals into use to approximate user visual attention in
a working prototype. We used heuristics and pilot testing to devise
mechanisms that translate the raw behavioral signals into numeric
scores representing the “amount of attention” a user has given to

a particular piece of online content. We then use these scores to
filter out and rank the content of the evolving comparison table,
further reducing the cost for developers to manually manage and
prioritize collected information incrementally as they are searching
and browsing.

3 BACKGROUND AND DESIGN GOALS
In this work, we explore automatically keeping track of and organiz-
ing relevant information on the web about trade-offs for developers
as they are making decisions. To ground our research, we build
on the “Option-Criterion-Evidence” framework introduced in our
Unakite system [81]. We first briefly explain this framework as well
as the Unakite system to provide necessary background for this
research. Then we discuss the design goals for the new Crystalline
system.

3.1 The Unakite System
Unakite was designed to address both the need of developers to syn-
thesize online information about trade-offs when making
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programming decisions as well as the need of subsequent develop-
ers to be able to understand the rationale behind those decisions 
[81]. As a Chrome extension, Unakite enables developers to manu-
ally collect any content from any web pages as snippets (pieces of 
information, Figure 2-d) into the snippet repository (a holding tank 
of information snippets, Figure 2-c) by selecting (Figure 2-a1) or 
dragging out a bounding box to enclose the desired content with 
the mouse cursor (Figure 2-a2). To organize the collected content, 
developers can use drag-and-drop to move the collected snippets 
from the repository into a comparison table (Figure 2-b) options 
(as row headers, e.g., a solution to solve a problem), criteria (as 
column headers, e.g., a standard by which options are judged), and 
evidence (“thumbs-up” or positive, “thumbs-down” or negative, and 
“informational” (“i”) ratings that spread across the rest of the table 
cells) that illustrates the trade-ofs among various options on those 
criteria. Developers can also rank the options and criteria in the 
table to refect their unique order of preferences. The resulting 
comparison table is automatically saved and can be used by subse-
quent developers to understand the context of the previous decision 
space: what options and alternatives were explored, what criteria 
needed to be met, what trade-ofs were discovered, and what was 
considered the most important and why. 

Although Unakite has been shown to incur less operational 
overhead when it comes to collecting and organizing information in 
situ compared to common baseline methods like using Google Docs 
[81], developers still need to manually collect and structure each 
piece of content, which can be a costly process [58, 71, 72, 85, 118]. 
In addition, it forces developers to start using the tool from the 
outset to be able to capture the whole exploration, but, for cases in 
which the needs for collecting and organizing information are not 
discovered until partway through an investigation process (which 
can be quite common in agile style software development [23, 30, 
31, 81] that is widely adopted across the software development 
industry), developers would have to retrace their exploration paths 
from the beginning and re-collect and organize the content, wasting 
time and causing duplicate work. 

3.2 Design Goals 
In order to address the above limitations of Unakite as well as other 
similar sensemaking tools [3, 5, 16, 93], we formulated the following 
design goals: 

• Minimize the cost to collect information. The system 
should attempt to automatically collect information in the 
background without the user’s specifc attention or direction. 
This will help users focus on the main task of reading and 
comprehending the content. 

• Actively flter, organize, and prioritize information. The 
system should actively flter, organize, and prioritize the col-
lected information that gets presented to the user and help 
the user avoid information overload. 

• Reduce the cost of incorrect automation support. In 
cases where machine support is incorrect or undesirable, 
the system should allow users to easily recover from those 
mistakes [2, 62]. 

4 CRYSTALLINE 

4.1 System Overview 
Guided by prior work and our design goals, we designed and im-
plemented Crystalline, a Chrome extension prototype to help de-
velopers automatically collect and organize information relevant 
to their decision making problems. 

Users mainly interact with Crystalline through a sidebar (Figure 
1a) that is injected directly into every web page. As a developer 
opens and reads web pages, the sidebar will be updated with the 
automatically collected options (Figure 1c) and criteria (Figure 1d) 
in the list view (Figure 1c & d). The list view serves as a concise and 
glanceable outline that refects one’s exploration progress — what 
options one has encountered and what criteria one has looked into. 
Clicking on one of the criteria will enter a detailed view for that 
criterion (Figure 3a), listing out all the collected evidence snippets 
organized by options; similarly, clicking on an option will enter the 
detailed view for that option, which lists all the related criteria and 
the corresponding evidence associated with that option. Details 
on how we currently implemented the automatic collection and 
organization features are discussed in section 4.2. 

In addition, developers can also switch to the comparison table 
view (Figure 3c) that summarizes the decision making space and 
the trade-ofs among various options in detail. The order in which 
a criterion gets presented both in the list and the comparison table 
view are based on the estimated importance of the item to the user, 
which we approximate by the amount of attention a user has given 
to it. This, in turn, is derived from the user’s implicit behavioral 
signals, which we will discuss in detail in section 4.2.2. To examine 
a particular piece of evidence in the detailed view or a comparison 
table cell, users can hover on it to zoom in (Figure 3b), or click on it 
to teleport to the original web page and scroll position from where 
it was previously collected. 

Similar to previous systems [61, 81, 99], the sidebar can be tog-
gled in and out like a drawer by clicking the extension icon (Figure 
1h) or using a keyboard shortcut. Developers can passively moni-
tor the sidebar as they are searching and browsing to make sure 
the system performs correctly, and quickly correct or dismiss the 
mistakes that the system makes. In addition, developers are free 
to hide the sidebar to have an unobstructed view of the web page, 
knowing that all the features for automatic information collection 
and organization are still running in the background even if the 
sidebar is in the hidden state. 

4.2 Detailed Design 
We now discuss how the diferent features in Crystalline are de-
signed and implemented, and how they support our design goals. 

4.2.1 Collecting information about options and criteria. In Crys-
talline, we explore having the system automatically collect relevant 
information in the background without the user having to explicitly 
perform the action of collecting information. This has the beneft of 
minimizing the distraction and cost of keeping track of information 
as an extra step in addition to thinking about the content on a web 
page, which, in turn, maximizes a user’s attention to reading and 
understanding the content itself. 
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Figure 3: Additional Crystalline’s user interfaces. Clicking on one of the criterion in the criteria pane (Figure 1d) will enter
a detailed view for that criterion (a), listing out all the collected evidence snippets organized by options. Users can zoom in
on an evidence snippet (b) by moving the mouse cursor over it in the detailed view until the cursor becomes a magnifying
glass. Crystalline will actively look for and remind users of evidence for the same or similar criteria from pages that users
have visited but have not yet paid attention to (d). Finally, similar to Unakite [81], Crystalline offers a comparison table view
(c) that summarizes the decision making space and the trade-offs among various options in detail.

Specifically, Crystalline collects information about options, crite-
ria, and their associated evidence snippets as discussed previously,
which was reported by prior work as the key aspects developers
look for when solving decision making problems [63, 75, 81]. Cur-
rently, to automatically recognize the options, Crystalline employs
the following techniques: (1) it looks for the word or phrase between
any instances of “vs.” (or other variants like “v.s.”, “versus”, etc.) in
web page titles and opening paragraphs and adds them as potential
options. For example, the Medium.com article titled “Tensorflow
vs Keras vs Pytorch: Which Framework is the Best?”2 would yield
“Tensorflow”, “Keras”, and “Pytorch” as three potential options; (2)
it first runs noun phrase and entity extractions using the Google
Cloud Natural Language API [48] on the web page title, section
headers as well as the column and row headers of any HTML tables,
then checks if the identified entities are mentioned in the titles of
other visited pages. In addition, it also checks if the identified enti-
ties would frequently come up in each other’s Google autocomplete
results (the Google “vs” technique is described in [40, 82], which
issues queries in the form of “[option_name] vs” to the Google
Autocomplete API to get a list of autocomplete results that can
be interpreted as potential alternatives to “[option_name]”. An
earlier version of this technique was launched as an experimental
2https://medium.com/@AtlasSystems/tensorflow-vs-keras-vs-pytorch-which-
framework-is-the-best-f92f95e11502

feature named Google Sets [21, 119]). Furthermore, it checks if the
identified entities are mentioned repeatedly across the main con-
tent of the current web page. All potential options will go through
a final deduplication process to produce the final list of options
presented in the options pane (Figure 1c) in the sidebar. We chose
and tuned these heuristics based on our internal usage and pilot
testing results. In the future, more advanced NLP techniques could
be used to augment the current set of heuristics.

Crystalline uses a similar set of heuristics to identify criteria from
the web pages, with an emphasis on examining section headers
and table headers (and entities extracted from them) rather than
website titles. In this work and in the context of programming,
we focus on using such heuristics to identify the criteria directly
mentioned in the content, such as extracting “learning curve” from
“React is widely considered to have quite a steep learning curve.”
We leave the extraction of latent criteria for future work, which are
more commonly seen in domains other than programming, such
as extracting “price” from “I bought this mp3 player for almost
nothing” [98].

Further, users can always edit the options and criteria names,
delete unwanted options or criteria, or manually select and collect
any text as either an option or a criterion using the popup menu
(Figure 4) as a backup.

https://medium.com/@AtlasSystems/tensorflow-vs-keras-vs-pytorch-which-framework-is-the-best-f92f95e11502
https://medium.com/@AtlasSystems/tensorflow-vs-keras-vs-pytorch-which-framework-is-the-best-f92f95e11502
https://Medium.com
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Implicit Selected References in Descriptions Strength of Score Function W 
Behavioral   Prior Research indication of 
Signal user attention 

Copying content Developers frequently copy Triggers when the user copies some text Strongest 40 for each triggering 
sample code from the web from a content block b. This typically 
to use in their own code happens when a developer copies sample 
[8, 54, 55] code from web pages to try out in their 

own code. 

Text highlighting People tend to highlight Triggers each time when some text in a Strong 20 for each triggering 
text while reading to help content block b gets selected. Triggerings 
focus their attention [105] where the selected text is shorter than 5 

characters are disqualifed. 

Clicking Clicking on content, such as Triggers when the user clicks on a content Strong 20 for each triggering 
widgets and links, is block b. This accounts for situations where 
considered to be a decent the developer interacts with content on a 
behavioral indicator for page, such as live demo widgets. Clicks that 
perceived interesting are part of text highlighting are excluded. 
elements on web pages [57] 

Cursor hovering People tend to use the Triggers each time when the mouse cursor Weak 0.5t , where t is the duration (measured 
cursor to guide their hovers over a content block b for at least 2 in seconds) of the cursor’s stay within 
attention while reading web seconds. This accounts for situations where the bounds of content block b. The maxi-
pages [18, 52, 57, 65, 103]. the developer naturally moves the mouse mum score is 10. In our pilot testing, users 

cursor onto the content that is currently rarely spend more than 10 seconds read-
being read to guide his or her attention ing a text block. 
[18, 64, 102, 103]. However, a cursor hover 
triggering will be disqualifed when the 
system detects an extended period of idling 
(2 minutes) without any user actions. 

Content dwelling The longer some content Triggers each time when a content block b Weak 0.2t , where t is the duration (measured 
stays visible, the more likely gets scrolled into and stays in the visible in seconds) of content block b’s stay in 
that the user is interested in view port for at least 2 seconds. This the visible browser viewport. The maxi-
it [22, 65]. indicates that the developer has at least mum score is 4. In our pilot testing, users 

paid attention to b. However, a dwell rarely stay at one location for more than 
triggering during idling is disqualifed. 10 seconds. 

Table                    
provides evidence from selected prior research on the efcacy of the signals; column 3 describes how the signals are used in 
Crystalline; column 4 indicates the relative strength of a signal in terms of predicting user attention; column 5 details the 
scoring function used to translate signal triggerings into numeric scores based on the relative signal strengths. The scoring 
functions were empirically determined through iterative pilot testing. 

1: Implicit behavioral signals used in Crystalline to track user attention. Column 1 lists the implicit signals; column 2

4.2.2 Organizing and prioritizing information. Not all options or attention score Ac representing the amount of attention that a user 
criteria are equally useful to a particular developer. Prior work has pays to a particular criterion c is then calculated using equation (1): 
suggested that a programming decision usually comes down to Õ 
how well each option matches the developer’s goals and criteria Ac = I (t , c) × W (t) (1) 
that he or she deemed important [42, 77, 78, 82, 92, 94, 100, 107]. t ∈T 
In this work, we explore using the amount of attention that one where T is the set of all implicit signal triggerings; t is a particular 
pays to a particular criterion to approximate its perceived value triggering; I (t , c) returns 1 if t was triggered on a content block that 
or importance. To operationalize this, for each web page that a de- is associated with the criterion c , and returns 0 otherwise; and  
veloper

W (t)
 visits, Crystalline processes all the content blocks (HTML is the corresponding scoring function found in the last column in 

block-level elements, such as <p>, <li>, <pre>, and <div>, etc.) to Table 1. The scoring functions were empirically determined through 
detect what options and criteria are associated with each block. iterative pilot testing. 
Specifcally, it prioritizes verbatim mentioning of options and cri- To accommodate various behavioral patterns exhibited by dif-
teria within a block, then possible options and criteria identifed ferent users, we iteratively recruited four batches of participants 
from section headers above the block, then web page titles. If no with diverse backgrounds and job responsibilities both within our 
options are detected, the page title is used as a placeholder. lab and externally. We followed a diary study approach [101] by 

Next, Crystalline tracks each triggering of fve implicit behav- monitoring their online searching and browsing behavior related to 
ioral signals (copying content, text highlighting, clicking, cursor hov- programming through a custom chrome extension that logs trigger-
ering, and content dwelling) listed in Table 1 on any content block ings of the above behavior signals and ranks the importance of the 
and translates it into a numeric score (using column 5). The fnal associated content blocks accordingly (the initial score functions 
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Figure 4: Using the selection popup menu to manually col-
lect options and criteria. 

were determined through our heuristics). At the end of each sense-
making episode, we prompted them to review how well the system 
did in inferring what they thought was important, and tuned the 
score function heuristics accordingly (favoring recall over preci-
sion). We leave more advanced and adaptive scoring models for 
future work to investigate. 

By default, the system shows the top 15 criteria ranked by de-
creasing attention scores in both the list and the table view. Users 
can use the “See More” and “See Less” buttons to adjust how many 
criteria that they would like to see at the same time (Figure 1g). 
As the user browses more content and spreads his or her attention 
on diferent content blocks, the order of these criteria changes ac-
cordingly in real-time, which provides the user with an ambient 
awareness of what the system thinks are important. To provide 
users with the fexibility to override the system’s ranking, they can 
right-click on a criterion and use the “pin this criterion” feature 
to pin it at the top (Figure 1i). They can additionally specify their 
own order of preferences by dragging and dropping to reorder the 
criteria in the table view, which will automatically pin a criterion 
if it is not already pinned. Each time an implicit behavioral signal 
triggering is detected, Crystalline also collects the target content 
block as an evidence snippet, which is presented with its original 
styling [81] in the detail views and the comparison table view as 
mentioned above. 

4.2.3 Managing connections and relationships. One way for Crys-
talline to actively manage the relationships among the collected 
information is to automatically merge similar criteria together into 
criteria groups (indicated by a “multiple items” icon at the end, 
see Figure 1e). To achieve this, we leverage recent advances in 
transformer machine learning models such as Universal Sentence 
Encoder [13] and BERT [28] that can encode textual content into 
semantically meaningful vector representations called embeddings 
[43], i.e., two or more semantically close pieces of content will also 
be close in the embedding vector space (measured by a distance 
metric, e.g., the cosine similarity distance between vectors [113]). 
Crystalline computes an embedding for every criterion as the aver-
age of its own embedding and its corresponding evidence snippet, 
and automatically merges criteria that are within a specifed se-
mantic distance threshold to each other into a group. For example, 
as shown in Figure 3a, the system automatically merges “Right to 
Left” (taken from the option “Splide”) and “RTL” (taken from the 
option “Swiper”) together since they are semantically similar. The 
distance threshold was determined empirically through iterative 
pilot testing. This has the beneft of reducing clutter while helping 
users make connections among the information that they have 

seen, which is reported by prior work as one of the difcult steps 
during sensemaking and schematization [37, 96, 106]. In case the 
system fails to automatically group similar criteria together, users 
can use drag and drop to manually make the grouping. Similarly, 
users can easily split a criteria group by right-clicking on the group 
and hitting the “split this criteria group” menu item. 

In situations where a user reads and investigates some criterion 
at one location, Crystalline will also actively look for evidence for 
the same or similar criteria from other pages that the user has vis-
ited (including the current page) but has not (yet) paid attention to 
according to the implicit signals. Crystalline will remind the user of 
the existence of this additional evidence through a red notifcation 
dot at the top right of a criterion (Figure 1f) as well as in the detailed 
views (Figure 3d). This then serves as an additional way for the sys-
tem to help users uncover and manage unseen relationships among 
the information space, as well as a springboard for users to jump 
directly to the “overlooked” information for further investigation. 

4.3 Implementation Notes 
The Crystalline Chrome browser extension is implemented in HTML, 
JavaScript, and CSS, using the React JavaScript library [34]. It also 
uses Google’s Firebase for database synchronization and persis-
tence, back-end functions, and user authentication. 

To produce the content embeddings, we used bert-as-a-service 
[28] and the uncased_L-12_H-768_A-12 pre-trained BERT model 
to implement a REST API that the extension can query on-demand. 
The embedding calculations are known to incur signifcant com-
putational costs and delays. Therefore, to ensure a smooth user 
experience, they are better suited to run on a remote server with 
the necessary resources rather than locally in an end-user’s browser. 

Unlike other systems [33, 95] that help users fnd more infor-
mation from new sources, Crystalline only collects information 
from the web pages that a user has explicitly visited. This is an 
intentional design choice we make in the current implementation: 
the major role of Crystalline is to remove the burden for users to 
actively keep track of relevant information that they have person-
ally seen and investigated so that it is easier for them to revisit and 
recall. We leave the design space of automating the discovery of 
new relevant information for future research to explore. 

5 EVALUATION 
We conducted an initial lab study to evaluate the usability of the 
Crystalline system in helping developers collect and organize in-
formation. 

5.1 Participants 
We recruited 12 participants (7 male, 5 female) aged 22-35 (µ = 
27.6, σ = 3.7) years old through emails and social media. The par-
ticipants were required to be 18 or older, fuent in English, and 
experienced in programming. Participants had on average 6.9 years 
of programming experience, with half of them currently working 
or having worked as a professional developer and the rest having 
programming experience in universities. 



Manually select Rename an Delete an Manually put Remove a Merge criteria Split criteria Pin or reorder Overall 
information and option / option / information snippets snippet from into groups groups criteria 
capture criteria criteria into the table the table 

Task A 27.0 (6.42) 1.67 (1.97) 0.67 (1.03) 16.5 (5.43) 0.50 (0.84) N/A N/A 6.00 (2.19) 52.3 (13.7) 
Task B 26.2 (5.56) 1.83 (1.60) 1.50 (1.38) 14.5 (5.28) 0.33 (0.82) N/A N/A 6.00 (1.79) 50.3 (14.3) 

Average 26.6 (5.74) 1.75 (1.71) 1.08 (1.24) 15.5 (5.21) 0.42 (0.79) N/A N/A 6.00 (1.91) 51.3 (13.4) 

(a) Unakite condition 

Manually select Rename an Delete an Manually put Remove a Merge criteria Split criteria Pin or reorder Overall 
information and option / option / information snippets snippet from into groups groups criteria 
capture criteria criteria into the table the table 

Task A 0.83 (0.75) 2.17 (1.17) 0.50 (0.84) 0.17 (0.41) 0.33 (0.52) 2.33 (0.82) 0.83 (0.75) 5.33 (1.97) 12.5 (3.02) 
Task B 1.00 (1.26) 1.67 (0.82) 0.50 (0.55) 0.33 (0.52) 0.33 (0.52) 1.83 (0.75) 0.67 (0.82) 5.50 (2.74) 11.8 (3.31) 

Average 0.92 (1.00) 1.92 (1.00) 0.50 (0.67) 0.25 (0.45) 0.33 (0.49) 2.08 (0.79) 0.75 (0.75) 5.42 (2.27) 12.2 (3.04) 

(b) Crystalline condition 

Table 2: Statistics for the average number of interactions performed by users to perform the tasks in the user study. Standard 
deviations are included in the parentheses. 
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5.2 Procedure sidebar that allows participants to view and organize the collected 

The study was a within-subjects design, where participants were information directly rather than switching xt  conte over to another 
presented with two tasks and were asked to complete one of them browser tab or application to paste in and structure information; 
using Unakite (baseline condition) and the other using Crystalline and 3)                      Unakite was shown to be easy to learn and use in prior
(experimental           condition), in a counterbalanced order. For each task, research and incurs signifcantly less overhead cost than using
participants were presented a programming decision-making prob- Google Docs [81]. 
lem, a set of four web pages, some necessary background of the In addition, rather than letting participants search for their   own
problem, and a list of three options available to solve   the problem pages to research, we provided them with the predefned set of 
that they were required to investigate. The provided web pages pages to ensure a fair comparison of  the  results, and since helping 

were either documentation pages of specifc    options or comprehen- to fnd relevant web pages is not a goal of Crystalline. Requiring 

sive review articles reviewing several options together. Participants participants to only read the predefned pages (each contains on 

were instructed to read through the provided web pages, and use average 7 screenfuls of content) also helps ensure that the two tasks            
either             Unakite or Crystalline to collect and organize information are of roughly equal difculty in terms of reading and cognitive
into a comparison table containing all the given options and at least processing efort. Furthermore, to ensure realism and              participant
8 diferent criteria in the order of their perceived importance. We engagement, the tasks were selected based        on actual questions 
imposed a 20-minute limit per task to                 keep participants from get- asked and discussed on programming forums and websites. We
ting caught up            in one of the tasks. However, they were instructed specifcally simplifed the requirements and background of task
to inform the researcher when they have collected 8 criteria                 as well B to match that of task A, since otherwise, choosing a JavaScript
as the associated evidence. If they wished to continue            beyond this framework (e.g., to build interactive industry-level web applica-
checkpoint, they were              allowed to, until they felt like they could tions) would arguably be more substantial and involve deeper and
make no further progress. Specifcally, the two tasks were to use much more careful comparisons and team discussions that are be-
the corresponding system in each condition to build a comparison yond the scope of this lab                   study. In fact, as shown in section 6.1
table of: there was no signifcant   diference by task. 

Each study session started by obtaining consent and having par-
• (A) Choosing a JavaScript carousel library to build a photo 

3 ticipants fll out a demographic survey. Participants were then given sharing web application. The available options were: Splide.js , 
4 a 10-minute tutorial showcasing the various features of Unakite and Slick , and er5 Swip . Crystalline and a 10-minute practice session on both systems before 

• (B) Choosing a front-end framework to implement a basic starting. At the end of the study, the researcher conducted a survey personal portfolio website. The available options were: Re-
6 and an interview eliciting subjective feedback on the Unakite and act.js , Angular7 , and Vue.js8. Crystalline experience. Each study session took approximately 60 

We chose Unakite over other commercially available tools such minutes, using a designated MacBook Pro computer with Chrome, 
as Google Docs as the baseline condition because: 1) it can be easily Unakite and Crystalline installed. All sessions were carried out in 
used to capture richer contexts such as formatted text (example person, with participants and the researcher appropriately masked 
code), images, and links; 2) similar to Crystalline, it also provides a following COVID-19 mitigation protocols. All participants were 

compensated $15 for their time. The study was approved by our 
3https://splidejs.com/
4 institution’s IRB ofce. https://kenwheeler.github.io/slick/ 
5https://swiperjs.com/ 
6https://reactjs.org/ 
7https://angular.io/ 
8https://vuejs.org/ 

https://splidejs.com/
https://kenwheeler.github.io/slick/
https://swiperjs.com/
https://reactjs.org/
https://angular.io/
https://vuejs.org/
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Question Statements Crystalline condi- Unakite condition 
tion 

I would consider my interactions with the tool to be understandable and clear. 6.17 (0.39) 6.08 (0.67) 

I would consider it easy for me to learn how to use this tool. 6.08 (0.79) 6.00 (1.04) 

I enjoyed the features provided by the tool. 6.25 (0.45) 6.17 (0.58) 

Using this tool would make solving programming problems at my work more efcient and efective. 6.08 (0.29)∗ 5.75 (0.45)∗

If possible, I would recommend the tool to my friends and colleagues doing programming work. 6.17 (0.58)∗ 5.58 (0.51)∗

Table                    
their experience interacting with Crystalline and Unakite on a 7-point Likert scale from “Strongly Disagree” (a score of 1) to 
“Strongly Agree” (a score of 7). Statistics in column 2 and 3 are presented in the form of mean (standard deviation). Statistically 
signifcant diferences (p < 0.05) through paired t-tests are marked with an ∗ .

3: Statistics of scores in the post-tasks survey. Participants were asked to rate their agreement with statements related to

6 RESULTS signifcant efect of task (F (1, 20) = 0.53, p = 0.48)). Thus, using 
Crystalline resulted in reduced overhead costs of collecting and6.1 Quantitative Results  
organizing information. 

All participants were able to complete all of the tasks in both con- To gain deeper insights into why the overhead cost was signif-
ditions, and nobody went over the pre-imposed time limit. Figure icantly lower in the Crystalline condition, we tallied the number 
1, together with Figure 3, shows an example table built by one of of interactions performed in each task while collecting and orga-
the participants in the study for task A. nizing information to build the comparison tables (Table 2). Here, 

To examine how Crystalline performs compared to the baseline we notice that the majority of interactions in the Unakite condi-
Unakite condition, we measured the time it took for participants tion are to manually collect information snippets (on average 26.6 
to fnish each task. A two-way repeated measures ANOVA was times) and place them into the comparison table (on average 15.5 
conducted to examine the within-subject efects of condition (Crys- times). In contrast, in the Crystalline condition, the majority of in-
talline vs. Unakite) and task (A vs. B) on task completion time. There teractions are to merge criteria into groups (on average 2.08 times) 
was a statistically signifcant efect of condition (F (1, 20) = 8.06, and pin or reorder the criteria in the table (on average 5.42 times). 
p = 0.01) such that participants completed tasks signifcantly This suggests that, to some extent, Crystalline has transformed 
faster (21.6% faster) with Crystalline (Mean = 611.8 seconds, SD the previously active capturing and organizing work into passive 
= 144.6 seconds) than in the Unakite condition (Mean = 780.3 sec- monitoring and error-fxing, which explains the lower overhead 
onds, SD = 137.6 seconds). There was no signifcant efect of task cost. 
(F (1, 20) = 0.11, p = 0.74), indicating the two tasks were indeed of In the survey, participants reported (in 7-point Likert scales) that 
roughly equal difculty. These results suggest Crystalline helped they thought the interactions with Crystalline were understandable 
participants build up comparison tables faster overall, even the and clear (Mean = 6.17, SD = 0.39), Crystalline was easy to learn 
majority of their time was necessarily spent reading through the (Mean = 6.08, SD = 0.79), and they enjoyed Crystalline’s features 
material in both conditions. (Mean = 6.25, SD = 0.45). In addition, compared to Unakite (Mean 

To account for this reading time, we also compared the overhead = 5.75, SD = 0.45), they thought using Crystalline (Mean = 6.08, 
cost [81] of using both tools to collect and organize information. For SD = 0.29) would help them solve programming problems more 
the Crystalline condition, we calculated the overhead cost as the efciently and efectively, and would recommend Crystalline (Mean 
portion of the time participants spent on directly interacting with = 6.17, SD = 0.58) over Unakite (Mean = 5.58, SD = 0.51) to friends 
Crystalline (scrolling through the list and table view to examine and colleagues doing programming work, both diferences were 
the evidence collected so far, splitting and merging criteria, pinning statistically signifcant under paired t-tests. Details of the survey 
important criteria, manually collecting information, etc.) out of the questions and scores are presented in Table 3. 
total time they used for a task (vs. reading and comprehending 
the web pages). Similarly, in the Unakite condition, the overhead 
cost was calculated as the percent of time participants spent on 6.2 Qualitative Observations 
directly using Unakite features (selecting and collecting information 6.2.1 Usability and usage paterns. Overall, participants appreci-
snippets, drag and dropping snippets into the comparison table, ated the increased efciency aforded by various Crystalline fea-
etc.), in the same way as was done to compare Unakite to Google tures. Many (9/12) mentioned that the perceived workload to collect 
Docs [81]. and organize what they have investigated was minimal, saying that 

A two-way repeated measures ANOVA was conducted to exam- “I feel like I got a table for free” (P3), “the fact that I can see what
ine the within-subject efects of condition (Crystalline vs. Unakite) I’ve paid a lot of attention to automatically bubbles up to the top is 
and task (A vs. B) on overhead cost. There was a statistically sig- quite magical” (P9), and “It feels as if I was sitting in the passenger
nifcant efect of condition (F (1, 20) = 77.5, p < 0.001) such that seat and not having to do all the steering and maneuvering” (P7).
the overhead cost was signifcantly lower (almost 60% lower) in Some (3/12) participants also reported having taken advantage of 
the Crystalline condition (Mean = 11.6%, SD = 0.04) than in the the overlooked information reminder feature (Figure 3d) to guide 
Unakite condition (Mean = 28.4%, SD = 0.07). Again, there was no their research. Furthermore, participants refected that Crystalline 
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relieves them of the burden of trying to anticipate the value of a 
particular piece of information before collecting it since “the impor-
tant bits will eventually be at or near the top, hopefully” (P12), and 
they could “focus on reading the page itself and not context switch to 
bookkeeping mode again and again” (P5). 

However, some did voice concerns about the system’s ability at 
the beginning of the tasks, arguing that they were “skeptical if it will 
actually collect the right things” (P1), and reported that they would 
“skim through the list view and the table view quite frequently at the 
beginning” (P7). However, as they progressed through the tasks, 
their confdence in Crystalline increased, and they only occasionally 
checked the sidebar. We observed that three of the 12 participants 
ended up not examining and editing the system’s output until they 
felt like they had fnished reading and processing all the given 
pages, and they made minimal edits to the results. 

6.2.2 Working with machine suggestions. Participants generally 
thought that the benefts of automating the collection and orga-
nization process outweighed the costs of dealing with occasional 
unhelpful machine suggestions, such as incorrectly merging criteria 
together or prioritizing unimportant criteria at the top of the list. 
For example, P7 refected, “it feels like a mind reader. I know it’s 
not perfect, but I also don’t expect it to be, and would actually prefer 
occasionally peeking into what it’s been doing and fxing whatever 
that’s not correct than grabbing everything by myself all the time.” 

Some did raise concerns about the ordering of criteria getting 
changed too frequently (“they [the criteria] were jumping around”, 
P7) at the beginning. This is likely due to the fact that users were 
skimming through a web page without paying particular attention 
to anything at the beginning, causing their attention scores to be 
relatively indistinguishable. For future iterations of the system, we 
could experiment with less frequent UI update intervals under these 
circumstances so it would cause less distraction. 

6.3 Evaluation Discussion 
Similar to what was reported in prior work [99], since our par-
ticipants were not explicitly told how the system worked to au-
tomatically collect and rank information, they had to form their 
own mental models and hypotheses about how the system works 
and how they could afect it with their behavior. For example, P8 
noticed that “it looks like if I spend a little bit more time on a partic-
ular place on a page, the corresponding criterion would get picked up 
and bumped up quickly; and if I click on that part a bunch of times, 
which happens to be what I typically would do when I try to focus 
my attention on something now that I’m thinking about it, it’s [the 
corresponding criterion] going to go up even faster.” This suggests 
that our implicit signals were working, and further, that with ex-
perience users might adapt to explicitly steer the system towards 
their goal of collecting and prioritizing information, resulting in, to 
some extent, a mixed-initiative collection approach that still would 
require much less efort than the baseline methods. Future research 
could explore the costs and benefts of a wide variety of interactions 
and signals that lie on the spectrum between implicit behavioral 
signals to full manual direct manipulations, and any diferences 
caused by directly instructing users about the implicit signals being 
used. 

Though the current version of Crystalline mainly focuses on 
reducing the cost for developers to collect and organize informa-
tion, which was exactly what we tested in the lab study, we were 
also interested in making sure that the quality of the comparison 
tables built using Crystalline does not degrade as seen in other 
automation scenarios [49, 111]. Since there is not a gold standard 
comparison table, we evaluated the correctness of Crystalline’s 
automatic approaches by how much editing participants had to 
do in order to fx Crystalline’s mistakes and make sure that all 
the content in the table was eventually flled out and ranked cor-
rectly according to their understanding as per the study protocol. 
As shown in Table 2(b), participants only had to perform on aver-
age 12.2 edits to the automatically generated comparison tables, 
compared to the 51.3 actions that they had to manually perform in 
the baseline Unakite condition (the diference is statistically signif-
icant, p < 0.01). Among these, edits that are related to collecting 
information, such as manually selecting information and capture 
(0.92 times), renaming (1.92 times), and deleting information (0.50 
times) were minimal, suggesting that our combination of NLP and 
behavioral signal heuristics was working efectively to collect infor-
mation that the users thought was important. However, participants 
pinned or reordered the criteria that were automatically ranked by 
Crystalline on average 5.42 times (SD = 2.27 times). One possible 
explanation is that the universal scoring functions (in Table 1) did 
not necessarily apply to every single participant, suggesting the 
need for a more sophisticated and personalized scoring mechanism 
in future iterations of Crystalline and systems that leverage signals 
from users’ natural browsing behavior. 

In addition, we asked and coded their opinions about using these 
tables as if they were the subsequent developers trying to under-
stand the design rationale. In general, participants were excited 
about using comparison tables automatically built by Crystalline. 
For example, P10 highlighted scenarios where Crystalline would 
be useful for his own purposes, saying that “it’s sort of like a never-
erased whiteboard that would most likely help me remember what I 
looked at three months ago.” In addition, some refected that com-
pared to having no clue of why a decision was made in a particular 
way in the frst place, they would appreciate at least having access 
to a Crystalline table even if it was not actively monitored and 
maintained during the initial developer’s sensemaking process. For 
example, P4 said: “I think being able to read something like this [Crys-
talline table] is going to make a big diference when you’re banging 
your head against the wall trying to understand why this particularly 
old API was chosen, I mean, especially when the guy who wrote the 
code was long gone, I could at least ‘read a transcription of his mind’ 
in some sense.” Here, we see preliminary evidence that our approach 
of automatically collecting and organizing information on behalf of 
developers is useful and valuable. We leave the formal evaluation 
of the quality of fully automatically built comparison tables with 
possibly more advanced versions of Crystalline for future work. 

7 LIMITATIONS 
Currently, Crystalline works best on a limited set of web pages in 
the programming domain, including documentation pages that are 
dedicated to a particular library or a set of APIs, as well as review ar-
ticles or question answering pages that discuss and compare several 



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Michael Xieyang Liu, Aniket Kitur, and Brad A. Myers, Michael Xieyang Liu, Aniket Kitur, and Brad A. Myers 

options together. We chose to optimize for these types of web pages 
in the current prototype as they are reported in prior work [63, 81] 
as well as our formative discussions with developers as some of the 
most frequently consulted programming resources when it comes 
to making decisions. However, the performance reported on the 
web pages used in the study is not necessarily representative of 
how Crystalline would operate even on web pages of these types 
for users in general. In addition, Crystalline currently relies heavily 
on the overall structure of the web pages being standard, mean-
ing that a page uses HTML tags appropriately according to their 
semantics (e.g., enclosing headers and list items in <h> and <li> 
tags rather than wrapping everything with <div> tags) and that 
there is a strong semantic coherence between a section header and 
its corresponding content. Though this is sufcient to demonstrate 
the idea of automatic collecting and organization and the benefts 
they ofer, future research is needed to make Crystalline-style tools 
work on a more diverse set of web pages, as well as how to be 
clear upfront about its limitations in parsing web pages that do not 
follow appropriate web standards. 

Furthermore, our lab study has several limitations. Given the 
short amount of training and practice time participants had, some 
might not have been able to fully grasp the various features of 
Crystalline, or they might have been confused about what Unakite 
(the baseline system) has to ofer. The study tasks might not be what 
participants typically encounter in their daily work, depending on 
whether they are in a position to make decisions, and thus they may 
not be equipped with the necessary motivation or context that they 
would otherwise have in real life. We mitigate these risks in the 
study setup by: 1) having participants perform a practice task for 
each condition simulating what they would have to do in the real 
tasks; 2) choosing the study tasks based on actual questions that 
are discussed by developers on Stack Overfow and other popular 
programming community forums; and 3) providing participants 
with sufcient background information and context to help them 
get prepared. In fact, 7 out of 12 participants reported that the tasks 
were indeed similar to what they would deal with in their daily 
work. We would like to further address these limitations in the 
future by having developers use Crystalline on their own work 
and personal projects, which would provide them with sufcient 
motivation as well as experience with Crystalline enriched over 
time. 

Finally, the overhead cost measurement in the study could be 
conservative, as we did not account for the time participants spent 
simply glancing or looking at the sidebars without any explicit 
interactions with it. However, from our observations during the 
study, participants rarely spent any extended time doing this. Nev-
ertheless, we would like to take advantage of more advanced tools 
such as eye tracking [7, 89, 90, 103] in the future to more accurately 
account for the proportion of time when a participant’s gaze is 
fxated on the user interface of the tools rather than on actual web 
content. 

8 FUTURE WORK 
Through designing and evaluating Crystalline, we gained deeper 
insights into the benefts and trade-ofs of automatically collecting 
and organizing information for developers as they make sense of 

the web to make programming decisions. This motivates some ideas 
for future work. 

While Crystalline’s approach provides developers with an inex-
pensive way of capturing knowledge in the browser, it represents 
only one piece of a larger puzzle of how to support a developer’s ev-
eryday work that involves sensemaking and decision making. One 
dimension to characterize this is that developers also frequently per-
form activities outside their browsers, such as in IDEs, code editors 
[108], command-line interfaces [19], literate programming note-
books [68, 69], or threads of discussions during formal or informal 
meetings [125]. Further research would be needed to understand 
how to collect and organize information from these sources as well 
as how to integrate them together to provide a more comprehensive 
picture of the decision making context. Another dimension that is 
relevant is the lifecycle of the knowledge captured via systems like 
Unakite and Crystalline. Early evidence from the user study has 
suggested there is a beneft of Crystalline’s organization from the 
perspective of a subsequent developer who may need to understand 
a previous developer’s decision. Future research could investigate 
how well developers are able to understand and potentially reuse 
these automatically assembled knowledge artifacts, possibly with-
out any manual interventions from the initial knowledge authors, 
which could, in turn, eliminate the starting cost associated with 
initial knowledge creation [37] and unlock the virtuous cycle of 
accelerated programming knowledge reuse [37, 82]. 

Though the current set of mechanisms for deriving the impor-
tance of criteria from implicit behavioral signals generally works 
well for the setting of this research, there could be situations where 
a user’s default browsing behaviors and patterns fall outside the 
limited set of signals and heuristics that Crystalline is currently 
looking for. For example, a user might not have the habit of uncon-
sciously using the cursor as a reading guide or might not interact 
with the page at all while reading, which would render the tracking 
of some of the behavioral signals moot. In addition, users could 
exhibit diferent or additional behavior patterns when generalized 
to other tasks domains that involve information-backed decision 
making, such as comparison shopping, trip-planning, etc. [15, 53]. 
For example, when interacting with a map view to fnd the best 
local dining option, a user may frequently pan around and zoom 
(in and out) to view diferent restaurants, and both the duration of 
stay on a particular restaurant and how many times it is viewed 
back and forth could be leveraged to approximate the user’s interest 
and investment of efort. One way to address these concerns is to 
leverage a more diverse set of behavioral signals and potentially 
signal combinations, such as scrolling, mouse panning, zooming, 
eye tracking [35, 36, 89, 90], and facial gestures tracking [70, 117] to 
collect a more accurate picture of what users are seeing on screen. 
Another future direction that could be fruitful is to take a machine 
learning approach instead of the current rule-based approach for 
approximating content importance using behavioral signals. Specif-
ically, we could leverage recent advances in crowdsourcing and 
labeling [17, 20, 27, 114] to log, annotate, and construct a large-
scale data set that maps a variety of behavioral signals to the per-
ceived importance of content blocks that they are triggered on, and 
train on this data set to obtain scoring functions that would work 
more widely. Alternatively, an online learning approach could also 
be promising, where the system continuously learns, adapts, and 
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improves from an individual user’s behavior over time, as suggested 
by Horvitz [62]. 

Last but not least, automation aforded by systems like Crys-
talline enable people to focus their attention on reading and compre-
hending the web pages rather than splitting attention with having 
to collect and organize the information at the same time. However, 
prior work in learning science, such as Bransford et al. [24], found 
that people who personally performed the actions of collecting, 
categorizing, and organizing information were more likely to be 
able to recall it correctly and in detail, and exhibited increased con-
fdence in the fnal outcome. This raises an interesting tension and 
trade-of between full-on automation and direct manipulation — 
future research would be required to examine the long term efect 
on people’s learning outcome as well as confdence in their deci-
sions using systems like Crystalline, and determine the appropriate 
levels and circumstances when automatic information bookkeeping 
should be applied. 

9 CONCLUSION 
This paper explored how automatically collecting and organizing 
information as developers search and browse the web can better 
support them in decision making scenarios. Our designs were mo-
tivated by the growing complexity of the decisions that developers 
need to make, and the lack of tooling support to help them efciently 
gather and synthesize evidence without causing much interruption 
to their main focus of reading and understanding content online. 
We introduced Crystalline, a browser extension that instantiates 
this idea by leveraging natural language processing and users’ be-
havior signals such as mouse movement and dwell time to infer 
what information to collect and how to organize and prioritize it on 
behalf of a user. Through a lab study with 12 participants, we found 
promising evidence that using Crystalline as a copilot to collect 
and organize information is much faster and more efcient, and the 
resulting knowledge artifacts are potentially useful and valuable 
for the initial user as well as for subsequent consumption by people 
who need to understand the original decision-making context. 
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